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Plausible 3D Face Wrinkle Generation Using
Variational Autoencoders

Qixin Deng, Luming Ma, Aobo Jin, Huikun Bi, Binh Huy Le, and Zhigang Deng*, Senior Member, IEEE

Abstract—Realistic 3D facial modeling and animation have been increasingly used in many graphics, animation, and virtual reality
applications. However, generating realistic fine-scale wrinkles on 3D faces, in particular, on animated 3D faces, is still a challenging
problem that is far away from being resolved. In this paper we propose an end-to-end system to automatically augment coarse-scale
3D faces with synthesized fine-scale geometric wrinkles. By formulating the wrinkle generation problem as a supervised generation
task, we implicitly model the continuous space of face wrinkles via a compact generative model, such that plausible face wrinkles can
be generated through effective sampling and interpolation in the space. We also introduce a complete pipeline to transfer the
synthesized wrinkles between faces with different shapes and topologies. Through many experiments, we demonstrate our method can
robustly synthesize plausible fine-scale wrinkles on a variety of coarse-scale 3D faces with different shapes and expressions.

Index Terms—face modeling, wrinkle synthesis, deep generative models, variational autoencoders
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1 INTRODUCTION

R EALISTIC three-Dimensional (3D) facial animation has
attracted many attentions in both academia and indus-

try in recent decades [1, 2, 3], due to the emergence of its ver-
satile applications in virtual reality, films, games, education,
training, and so on. Despite numerous progresses made,
creating 3D face models with rich details is still non-trivial,
which requires not only coarse-scale facial features but also
subtle fine-scale facial features like wrinkles. Such geometric
details often convey important characteristics, and signifi-
cantly affect the visual appearance of the face. But geometric
details like wrinkles have been often under-explored in
many popular face modeling methods [4, 5, 6]. Indeed,
manually crafting wrinkles using 3D modeling packages
is often non-trivial, cumbersome, and labor-intensive; this
task could become even almost infeasible when dealing with
animated faces.

High-end face performance capture techniques are able
to reconstruct high quality facial details but significantly
rely on structured light and photo-metric stereo for face
scanning [3], which is often limited in a controlled environ-
ment and/or involves non-trivial intrusive setups. Recent
techniques can extract such geometric details from monocu-
lar video [3, 7, 8, 9, 10], but they require substantial compu-
tational time, and are generally sensitive to face poses and
lighting conditions of the input video. More importantly,
the above methods, including high-end facial performance
capture and monocular video based methods, cannot be
used to add geometric wrinkles to novel 3D face models,
which substantially limits their practical applications in
movie/game industries. To tackle this issue, researchers

• Q. Deng, L. Ma, A. Jin, and Z. Deng are with the Department of
Computer Science, University of Houston, Houston, TX 77204.
* Correspondence author’s E-mail: zdeng4@uh.edu

• H. Bi is with the Institute of Computing Technology, Chinese Academy of
Sciences, Beijing, China.

• B. Le is with the SEED Lab (Search for Extraordinary Experience
Division) in Electronic Arts Inc., USA.

Manuscript received April 22nd, 2020; accepted January 10th, 2021.

started to explore flexible alternatives such as sketch based
wrinkle generation [11]. However, it is non-trivial for users,
in particular, novices, to manually draw plausible wrinkles
on 3D face models using such methods. Furthermore, manu-
ally preserving the consistency of the drawn wrinkles across
animated facial frames could quickly become overwhelming
or maybe even an impossible task.

Clearly, there are several challenges standing in front
of an ideal realistic 3D wrinkle generation method: (1) It
should not rely on any prior knowledge of wrinkles for
a coarse-scale target face model, that is, wrinkles of the
target coarse-scale face model in other expressions may
be unobserved but need to be plausibly predicted. (2) It
should be sufficiently generalized to handle a variety of 3D
face models with different identities and expressions. This
is non-trivial since the shape and topology of target face
models might be dramatically different from a standard face
model. (3) It should be capable of preserving the wrinkle
consistency during animation. In other words, animated
wrinkles are expected to be spatially and temporally con-
sistent.

Inspired by the above challenges, in this paper we pro-
pose a novel 3D face wrinkle synthesis approach using
a deep generative model, and also introduce a complete
wrinkle transfer pipeline that can be robustly applied to
a variety of 3D face models with different identities and
expressions. Specifically, to obtain the training data, we first
employ a recent monocular video based capture method [10]
to acquire geometric wrinkles as displacements along per-
vertex normals. Then, by formulating the wrinkle genera-
tion problem as a supervised generation task, we implicitly
model the continuous space of face wrinkles via a compact
generative model such that plausible face wrinkles can be
generated through effective sampling and interpolation in
the space. In addition, in order to generate wrinkles on a
variety of novel target faces, we also design a complete
pipeline to faithfully transfer the wrinkles from the reference
face to various target face models.
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The main contributions of our work can be summarized
below:

• We introduce the first deep generative model for
directly synthesizing 3D geometric wrinkles on novel
target coarse-scale 3D faces. It also can handle wrin-
kle generation on animated 3D faces, while preserv-
ing the spatial and temporal consistencies of the
wrinkles across frames.

• We introduce a complete pipeline to faithfully trans-
fer geometric wrinkles from the reference face to
novel target faces. In this way, our approach can be
used to generate geometric wrinkles on 3D faces with
different shapes and expressions.

2 RELATED WORK

In this section, we briefly review recent research efforts that
are most related to this work, including facial performance
capture, variational autoencoders, and wrinkle synthesis.
For comprehensive surveys on facial animation and model-
ing, readers are referred to recent relevant surveys [1, 2, 3].

Face Performance Capture. Researchers employ struc-
tured light and photometric stereo [12] or attach markers on
the face [13, 14] to acquire the dynamic deformation of 3D
facial performance. The above methods are able to obtain 3D
facial models with geometric details, but inevitably involve
complex intrusive setups for subjects. Later, researchers
exploited stereo images [15, 16, 17, 18] or light-weight
binocular cameras [19], but these methods are limited to
the requirement of binocular video footages or depth data.
In recent years direct reconstruction from monocular video
[7, 9, 20, 21] becomes increasingly popular due to its low
cost setup and compatibility with various legacy video
footages. Follow-up works [8, 22] build controllable face rigs
and appearance from video for animation. All the above
methods, however, require intensive off-line processing.

To meet the demand of real-time applications, real-time
facial tracking systems have been developed using struc-
tured light [23]. Such methods offline fit a reference face
model for an individual first and then do online tracking for
expression transfer. Many methods have also been proposed
to combine depth information from a single RGB-D camera
[24, 25, 26] to track facial deformations in real-time. Based
on regression algorithms, Cao et al. [27] proposed a real time
face tracking method to capture coarse 3D facial geometry
from a single monocular camera. Their follow up work
[28] learns displacement patches from captured texture
to predict medium-scale geometry details. Recently, many
deep learning methods have been proposed to reconstruct
facial performance from input images or video [29, 30].
To achieve fine-scale facial geometric details comparable to
offline qualities, Ma and Deng proposed a novel hierarchical
reconstruction method [10] to reconstruct high resolution
facial geometry and appearance in real-time based on a
single monocular RGB video clip.

Variational Autoencoders. Deep learning models have
been increasingly used for computer graphics applications
in recent years. For example, multi-view Convolutional
Neural Networks (CNNs) [31] render 3D points clouds or
meshes into depth maps, which are suitable to be processed
by CNNs. Tatarchenko et al. [32] utilize the encoder-decoder

architecture to predict multi-views of a given object in 2D
space. The framework of variational autoencoders (VAE)
[33] provides a principal method for jointly learning deep
latent variable models and corresponding inference models
using stochastic gradient descent.

Many works have been done to extend the VAE models
for graphics applications. Researchers apply 3D CNN to
variational autoencoders such that 3D volumetric objects are
embedded into a compact space [34]. Nash and Williams
[35] proposed the ShapeVAE model to generate point coor-
dinates and normals based on different parts of an object.
Li et al. [36] proposed the GRASS model, a generative
recursive autoencoder for shape structures. Tan et al. [37]
use mesh variational autoencoders to generate high quality
deformable models with rich details. Ranjan et al. [38]
proposed a mesh autoencoder which is able to produce
deformed face meshes via sampling and interpolation in
the latent space. Recently, Saito et al. [39] proposed a fully
automatic single-view 3D hair reconstruction method based
on the VAE framework. Gao et al. [40] generate 3D shapes
as structured deformable meshes based on the VAE frame-
work. Similarly, Mo et al. [41] proposed the StructureNet to
learn a generative autoencoder of shape structures based on
graph neural networks.

In this work, our generative model predicts plausible
face wrinkles using variational autoencoders with convo-
lutional layers. Because CNNs are originally designed to
process images, researchers often have to parameterize their
problems into regular grid representations for graphics ap-
plications. As such, we convert wrinkles into a tensor, which
is suitable to be processed by CNNs.

Wrinkle Synthesis. Face wrinkles are strongly related
to physical muscles of the face. Hence, several methods
have been proposed to generate wrinkles under specific face
deformations by using simplified physical models of facial
structures. Zhang et al. [42] proposed a mass-spring system
to simulate the elastic dynamics of expressive facial wrin-
kles. Their follow-up work [43, 44] describes a subsequent
multi-layer deformation model to synthesize facial expres-
sions. Some researchers aimed at accurate reconstruction of
age-related skin wrinkles [45, 46]. All the above methods
are typically computationally complex, and heavily rely on
non-trivial tuning of physical parameters.

In recent years, geometric modeling methods have at-
tracted increasing attentions for wrinkle synthesis. Re-
searchers proposed a curvature driven model using con-
trollable energies to control various wrinkle shapes [47, 48].
Cutler et al. [49] proposed a method to generate wrinkles
on animated characters, but users have to manually place
a set of shape points on the character. However, with the
above methods, it is still less intuitive for users to estimate
the parameters to achieve realistic facial wrinkles for a spe-
cific expression, besides involved with painstaking manual
efforts. In light of the above issue, Kim et al. [11] proposed a
sketch based wrinkle generation method, which gives users
capability to directly design and control the amount and
shapes of wrinkles on 3D face models. But drawing well-
placed sketch curves on 3D meshes is non-trivial, and it
becomes even more difficult for users to draw consistent
wrinkles for different expressions or for animations.

It is noteworthy that the method by Ma et al. [50] can
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Fig. 1. Pipeline illustration of our wrinkle synthesis and transfer pipeline. It consists of three main steps: (1) deform the reference face with the target
face expression to obtain Se, (2) synthesize the wrinkles on the deformed reference face with the optimized identity and expression vectors, Ŝe+w,
and (3) transfer the wrinkles from ŝe+w to the subdivided target expression face model T

′
e , and obtain the final target expression face with the

transferred wrinkles, T
′
e+w.

also add wrinkles to 3D face models based on polynomial
displacement maps, but there are several significant differ-
ences between it and our work: (1) Except the captured
subject’s face, their method [50] cannot be generalized or
applied to any other face models, without acquiring new
data or training new models. In contrast, our work allows
users to straightforwardly apply our trained model to other
face models without extra data acquisition efforts. (2) Their
method [50] needs to capture fine-scale geometry/texture
and motion capture data of the subjects simultaneously as
training data, while our method does not need simulta-
neously acquired facial mocap data. Because of the above
significant differences, it is difficult to perform a fair com-
parison between our work and the method in [50].

3 APPROACH OVERVIEW

Our wrinkle synthesis approach can be conceptually de-
composed into the following two main modules: (i) VAE-
Wrinkle Embedding Network (VAE-WEN) construction,
and (2) wrinkle synthesis and transfer, described below.

VAE-WEN Construction. First, based on an in-house
collected 3D facial wrinkles dataset (§4), which is directly
extracted from high quality monocular face video [10], we
transform the wrinkles data into tensors (called wrinkle ten-
sors), which are suitable to be processed by CNNs. Then, we
build a deep learning based model to transform the wrinkle
tensors into compact latent representations, and thus plau-
sible new wrinkles can be sampled and interpolated in the
latent space (called VAE-WEN) (§5).

Wrinkle Synthesis and Transfer. Given a coarse-scale
target expression face (without wrinkle details) as well as
its corresponding coarse-scale neutral face as the input, the
wrinkle synthesis and transfer module (§6) is designed to
first synthesize wrinkles on the reference face and then
faithfully transfer the wrinkles to the target expression face.
Technically, it can be further decomposed into the following
three steps. Figure 1 illustrates the pipeline of the wrinkle
synthesis and transfer module.

• Step 1 (deform the reference face with the target expres-
sion): Via a registration process, we first deform the
reference face, Sn, to resemble the target neutral face,
Tn, and the target expression face, Te, as much as
possible, and then we further extend the deformation
transfer algorithm [51] to deform the reference face

to have the same expression as the target expression
face, and obtain Se.

• Step 2 (wrinkle synthesis): Through the constructed bi-
linear face model, where each face can be compactly
characterized as the combination of an identity vec-
tor and an expression vector, we employ a two-steps
optimization process to generate the optimized iden-
tity vector, wid, and the optimized expression vector,
wex. Then, taking both wid and wexp as the input,
our constructed VAE-WEN can synthesize fine-scale
wrinkles on the deformed reference face with the
optimized target expression. We denote the resulting
face as Ŝe+w.

• Step 3 (wrinkle transfer): Through adaptive subdivi-
sion and a similar transfer scheme as in the above
step 1, we can transfer the fine-scale wrinkles from
Ŝe+w (resulted from the step 2) to the subdivided
target expression face, T

′

e . The final output of step 3 is
a subdivided target expression face with synthesized
fine-scale wrinkles, denoted as T

′

e+w.

4 WRINKLE DATA ACQUISITION

To train our model, we need to collect a large set of 3D
geometric wrinkles on faces with various shapes and ex-
pressions. In this work we employ one of recent facial per-
formance capture methods [10] to reconstruct 3D geometric
wrinkles directly from high resolution monocular video.

Specifically, we used publicly available face video
datasets ([52] and [53]) and down-sampled all the videos
to 10 fps. We obtained a total of 30,457 video frames of
50 individuals with various expressions. We split the data
into a training set (27,446 frames) and a test set (3,011
frames). Given a monocular front face video, we first fit
the FaceWareHouse bilinear face model [4] to the input
video by estimating camera parameters, an identity vector,
an expression vector, and head pose. The FaceWareHouse
bilinear face model is created by using facial geometry of
150 subjects with 47 facial expressions. All data can be
assembled into a rank-3 data tensor T (11K vertices×150
identities × 47 expressions). Then we use N-mode singular
value decomposition (SVD) to decompose the tensor. The
N-mode SVD process is represented as:

T ×2 U
T
id ×3 U

T
exp = C, (1)
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where T is the data tensor, and C is called the core tensor.
The N-mode SVD helps to ”rotate” the data tensor and sort
the variances of C in a decreasing order for each mode. This
allows us to truncate the insignificant components of C and
obtain a reduced model of the dataset to approximate the
original data tensor as:

T ' Cr ×2 Ûid ×3 Ûexp, (2)

where Cr is the reduced core tensor produced by retaining
the top-left corner of the original core tensor, Ûid and Ûexp
are the truncated matrices from Uid and Uexp by removing
the trailing columns. We call Cr the bilinear face model from
the FaceWareHouse dataset. With Cr , any facial expression
of a subject can be approximated by tensor contraction:

V = Cr ×2 w
T
id ×3 w

T
exp, (3)

where wTid and wTexp are the identity vector (50 × 1) and
the expression vector (25 × 1), respectively. To this end,
we obtained one identity vector for each individual and
one expression vector for each video frame. Then, by em-
ploying the hierarchical reconstruction and displacements
refinement algorithms [10], we can augment the initially re-
constructed, coarse-scale face mesh with geometric wrinkle
details. Finally, we stored the extracted wrinkles as 1024 ×
1024 wrinkle tensors. A 2D wrinkle tensor in this work is
defined as per-vertex displacements along vertex normals,
which are stored in a 2D format using the UV coordinates
of the vertices, and the gaps between non-zero elements
are bilinearly interpolated. Meanwhile, we also stored the
identity vector (i.e., identity weights) and the expression vector
(i.e., expression weights) used in the bilinear face model
[4] that is associated with each stored wrinkle tensor. This
wrinkle data acquisition process is illustrated in Fig. 2.

Facewarehouse bilinear model

Expression Vector

Identity Vector

Hierarchical Reconstruction 

Input video frame

Fig. 2. 3D geometric wrinkle data acquisition process in this work

5 VAE-WRINKLE EMBEDDING NETWORK

In this section, we first describe our network architecture, in-
cluding variational autoencoders and a wrinkle embedding
network. After that, we evaluate the loss functions used in
our VAE network.

5.1 Network Architecture
Variational Autoencoders. Our approach is based on the
variational autoencoder (VAE), which has become one of
widely used generative models in recent years. A classic
VAE model consists of an encoder Eθ(x), and a decoder
Dφ(z). The encoder Eθ(x) encodes an input x into a latent
space as a latent vector z, while the decoder Dφ(z) can
generate an output x′ from a given latent vector z. Different

from the vanilla autoencoder which approximates Eθ(x)
by using a deterministic function, VAE uses a posterior
distribution q(z|x) to approximate Eθ(x) such that VAE is
able to generate new data x′ by sampling z from a prior
distribution pφ(x|z). We train the encoding and decoding
parameters θ and φ using stochastic gradient variational
Bayes (SGVB) algorithm [33] as follows:

θ∗, φ∗ = argmin
θ,φ

Ez∼Eθ(x)[− log pφ(x|z)]

+ Dkl(Eθ(x)|p(z))
(4)

where Dkl denotes the Kullback-Leibler divergence, which
measures the difference between Eθ(x) and p(z). Specif-
ically, assuming p(z) is a standard Normal distribution
N(0, 1) as a prior, and a posterior Gaussian distribution
Eθ(x) ∼ N(zµ, diag(zσ)), then the Kullback-Leibler diver-
gence Dkl is formulated as:

Dkl(N(zµ, diag(zσ))|N(0, 1)) =

1

2

∑
i

(z2σ,i + z2µ,i − log(z2σ,i)− 1).
(5)

To make all operations differentiable for back-propagation,
the latent vector z is to be sampled through a reparameteri-
zation trick [33] as:

z = zµ + ε� zσ, ε ∼ N(0, 1), (6)

where � is an element-wise matrix multiplication operator,
and zµ and zσ are the multi-dimensional outputs of Eθ(x).

VAE Architecture. To obtain the space of human face
wrinkles, we train our VAE network using the extracted
wrinkle tensors (§4). Specifically, we reshape each wrinkle
tensor as 1024× 1024× 1 before feeding it into the encoder.
The encoder is to encode the input wrinkle tensors into
a latent space zµ and zσ with 128 dimensional parame-
ters. Then, we sample z from zµ and zσ using the re-
parameterization trick introduced in [33]. The latent vector
can be used as the input of the decoder and reverted to
a 1024 × 1024 × 1 tensor. Figure 3 illustrates our network
architecture.

Loss Functions. We utilize two loss functions to train
the network weights. The first one is the reconstruction loss
denoted as Lrecon, which aims to minimize the reconstruc-
tion error between the input wrinkle tensor and the output
of the decoder. The second one is the KL divergence loss
denoted as LKL. For reconstruction, we use the L1 loss
between the elements of the input wrinkle tensor I and the
decoder-generated wrinkle tensor O, because it leads to less
smoothing results compared to L2, given by

Lrecon =
1

N

∑
i

∑
j

‖Ii,j −Oi,j‖1, (7)

where N denotes the total number of the elements in a wrin-
kle tensor. But the wrinkle details from the VAE network are
typically over-smoothed. To address this issue, we apply
a wrinkle edge-aware weighting scheme on the wrinkle
tensor to make the generation of wrinkles more sensitive
to wrinkle edges:

Lrecon =
1

N

∑
i

∑
j

wi,j‖Ii,j −Oi,j‖1,

wi,j = log(αGi,j + 1.0).

(8)
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Fig. 3. Our network architecture overview. Our VAE consists of an encoder and a decoder, the encoder takes wrinkle tensors as inputs, and the
decoder is able to generate wrinkle tensors. Our wrinkle embedding network aims to sample the latent space z, therefore, the decoder of the VAE
can produce corresponding wrinkle tensors.

For an input wrinkle tensor I, we have Grow as the
derivative of I with respect to the row direction and Gcol
as the derivative of I with respect to the column direc-
tion. After that, we set each element of G, G(i, j) =
max(Grow(i, j),Gcol(i, j)). The log function in Eq. 8 aims
to balance the weights between large and small wrinkles.
α is a constant, which scales G into a proper range. In our
experiments we set α = 1000.

Our final loss function is defined as follows:

LV AE = wreconLrecon + LKL. (9)

The VAE encoder and decoder networks have similar archi-
tectures, with kernel size = 5, stride = 2, and padding = 1
for all of convolution layers. After each convolution layer,
we add a batch normalization layer, leaky ReLU activation
function, and a dropout layer, except the last layer of the
decoder, which is followed by a Tanh activation function.
We set wrecon to 100, the keep probability of the dropout
layer to 0.8, and β in the leaky ReLU activation to 0.2.
We trained the VAE network for 50 epochs with the Adam
solver. The batch size is 6, and the learning rate is set to
10−4.

Wrinkle Embedding Network (WEN). The latent vec-
tors of wrinkles form a space. To achieve wrinkle synthesis,
we train a WEN to predict the wrinkle latent vector z in
the space from face features. As described in §4, for each
face, we generate its identity vector and its expression vector
and then concatenate them together to form a face feature
vector. The goal of the WEN is to map a given face feature
vector y to the wrinkle latent space z. We use fully connected
networks to build the WEN. The WENF takes a face feature
vector y as input and predicts the latent space vector ẑ. The
loss function is used to minimize the distance between the
encoder output z and the WEN’s output ẑ, defined as below:

LF = ||z − ẑ||2. (10)

The WEN consists of four 1024-dimensional, fully connected
layers. Each layer is followed by batch normalization, leaky
ReLU activation, and dropout layer. Similar to the VAE
network, we set the keep probability of the dropout layer to
0.8, and 0.2 for learky ReLU activation function. We trained

our WEN for 75 epochs with the Adam solver. The batch
size is 12, and the learning rate is set to 10−3.

TABLE 1
Per-element Euclidean errors when using our VAE and WEN models,
with either our proposed wrinkle edge-aware loss function or the L1

loss function, to generate wrinkle tensors from our test set. The unit of
the per-element errors in this table is 10−3.

Model Mean Error ± SD Median Error
VAE with our proposed Loss 5.43 ± 4.91 3.96
VAE with L1 Loss 7.85± 8.79 6.32
WEN with our proposed Loss 5.81 ± 5.10 4.27
WEN with L1 Loss 8.45± 9.03 6.86

5.2 Evaluation
We compared our wrinkle edge-aware reconstruction loss
function (Eq. 8) with the L1 loss function (Eq. 7) for VAE
model and WEN model. For a fair comparison, we used
the same architecture and parameters, except different loss
functions, for training. We tested two trained models on
our test set (total 3,011 face frames, each of which has
a 1024 × 1024 wrinkle tensor). We use the per-element
error to evaluate each model performance. Table 1 shows
the per-element Euclidean errors when using the VAE and
WEN models, with either our proposed wrinkle edge-aware
loss function or the L1 loss function, to generate wrinkle
tensors based on our test set. We can clearly see that in
both the VAE and WEN models, our wrinkle edge-aware
loss function can generate more accurate wrinkle tensors
than the L1 loss function. Figure 4 shows a comparison
example, which demonstrates that the generated results by
our wrinkle edge-aware loss function match the ground-
truth data closely, whereas the L1 loss function leads to less
accurate and over-smoothed results. We circle two regions
(red and black) in this example, and there exist obvious
visual differences between our wrinkle edge-aware loss
function and the L1 loss function.

6 WRINKLE SYNTHESIS AND TRANSFER

Since the number of vertices and the topology of different
faces are varied, and our wrinkle tensors are generated
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(a) (b)

(c) (d) (e)

Fig. 4. Comparison of different training loss functions. (a) is the heat map
between the wrinkle generated by the deep learning model trained with
our wrinkle edge aware loss function and the ground truth. (b) is the heat
map between the wrinkle generated by the deep learning model trained
with L1 loss and the ground truth. (c) is the 3D face applied with the
wrinkle tensor generated by the VAE-WEN with our wrinkle edge-aware
loss function. (d) is the 3D face applied with the wrinkle tensor generated
by the VAE-WEN with L1 loss function. (e) is the 3D face applied with
the ground truth wrinkle tensor.

based on the geometry of the reference face, we cannot
directly apply our wrinkle tensor onto novel target face
models. To this end, we design a complete pipeline for
wrinkle synthesis and transfer, described below. Notations
used in this section are summarized in Table 2.

TABLE 2
Notations used in Section 6.

Notation Explanation
Sn the reference neutral face
S̃n Sn deformed into the target neutral face
S̃e Sn deformed into the target expression face
Se the deformed reference face with the target expression

Ŝe
reference face constructed based on optimized feature
vectors (identity and expression vectors))

Ŝe+w Ŝe applied with the generated wrinkles
Tn the target neutral face
Te the target expression face
T
′
e the adaptively subdivided version of Te

T̂
′
e T

′
e deformed into Ŝe

T̂
′
e+w T

′
e deformed into Ŝe+w

T
′
e+w target expression face with the generated wrinkles

6.1 Deform the Reference Face with Target Expression
In order to transfer the wrinkle on the reference face to
a target face, we take inspiration from the deformation
transfer method [51] that can retarget the deformation of
one mesh to another, not constrained by the number of
vertices and topology, assuming a few point-to-point corre-
spondences are provided. The transfer maintains the target
mesh identity and keeps a proper scaling of deformation.
Therefore, before deformation transfer, we need to do mesh

registration between the reference face and the target face.
Different from [51] that builds the triangle correspondences
between the source and the target meshes through vertex-
wise correspondences, in this work we introduce a different
scheme. First, using the vertex-wise correspondences, we
deform the reference neutral face Sn into the target neutral
face Tn and the target expression face Te, respectively, and
obtain two meshes S̃n and S̃e. Note that S̃n (or S̃e) has the
same geometric topology as S but its shape closely approx-
imates Tn (or Te), and thus S̃n and S̃e do not maintain the
identity of S.

To obtain the deformed reference face Se that has the
expression of Te while maintains the S identity, we solve
the following minimization problem:

arg min
v̂1...v̂n

∑
i

‖Msi −Mti‖2 (11)

where Msi is the affine transformation matrices for all tri-
angles between S̃n and S̃e, Mti is the affine transformation
matrices between the reference neutral face Sn and the to-
be-solved reference expression face Se (with the new vertex
positions v̂1...v̂n).

We also compared our transfer scheme with the original
scheme in [51]. For a fair comparison, we used the same in-
put face models and markers. Figure 5 shows a comparison
example of two different transfer schemes. Its left side uses a
target face [5] that has 3448 vertices and 6736 triangles, and
its right side uses a target face [54] that has 28588 vertices
and 56572 triangles. The comparisons in Figure 5 clearly
show that our method can outperform the method in [51]
for both of the face meshes with a total of six expressions.
In particular, the deformation transfer method in [51] fails
to preserve the expressions on the right target face that has
many more vertices and triangles than the FaceWareHouse
reference face model (5639 vertices and 10988 triangles). The
reason is that, since the deformation transfer method [51]
computes the triangle face correspondences between the
source and target meshes, in the case of the right target face
in Figure 5, a target triangle may correspond to multiple
source triangles, which could lead to the lack of neces-
sary constraints in linear systems. In contrast, our method
builds the linear systems to be one-to-one correspondences
between source triangles and target triangles. This ensures
that our systems have stronger constraints and thus produce
more accurate deformations.

To validate the necessity of deformation transfer in our
framework, we did a comparison experiment, where we
directly used the non-rigid registration result S̃e as the input
of step 2. The comparison results are shown in Figure 6.
From Figure 6, we can clearly observe that our framework
with the use of deformation transfer obtains much better
results than our framework without the use of deformation
transfer (i.e., directly use non-rigid registration results). The
main reason is that, our training data are generated by using
the FaceWareHouse face model; if we directly use non-
rigid registration results, the identity of the deformed source
mesh cannot be preserved, which could lead to poor results
in the WEN model. Therefore, it falls short of generating
target face meshes with desired wrinkle details.
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Target face

Ours

Sumner et al. [52]

(a)                               (b)                              (c)                                  (d)                                (e)                                  (f )                                (g)                             (h)

Fig. 5. Comparisons of two deformation transfer schemes. The extended deformed face scheme in our approach can generate more accurate facial
expression deformations than the original deformation transfer algorithm [51], in particular, if the target face mesh has many more vertices/triangles
than the reference face model (i.e., the right example).

         (a)                                     (b)                                   (c)

Fig. 6. Result comparisons with/without the deformation transfer step.
Column (a) shows two different target expression faces. Column (b)
shows the generated result by our pipeline with our proposed defor-
mation transfer scheme. Column (c) shows the generated result by our
pipeline without deformation transfer.

6.2 Wrinkle Synthesis

To generate wrinkles on the target expression face model
via our VAE-WEN, we need to first extract the identity
vector and the expression vector from the target expression
face. As we do not have any ground-truth wrinkles for the
target expression face (only have the 3D coarse-scale target
expression face), we cannot directly obtain the two vectors
using the method in [10].

To address this problem, we first solve the following op-
timization problem to obtain the optimized identity vector
w̃id:

argmin
wid

∑
i

‖Cr,i ×2 w
T
id ×3 w

T
neutral − Vmarker,i‖2, (12)

where Cr is the bilinear face model built from the Face-
WareHouse dataset [4], wneutral is the expression vector of
the reference neutral face Sn, and Vmarker is the set of user-
specified vertices used in deformation transfer.

After we obtain w̃id, we can further solve the optimized
expression vector w̃exp. We solve a similar optimization
problem as follows:

arg min
wexp

∑
i

‖Cr,i ×2 w
T
id ×3 w

T
exp − Vmarker,i‖2. (13)

After we obtain w̃id and w̃exp for the target expression
face, we just need to feed w̃id and w̃exp into our constructed
VAE-WEN, and its output is the generated wrinkle tensor,
We, for the target expression face.

6.3 Wrinkle Transfer
Due to the shape difference between the reference face and
the target expression face Te, we cannot directly apply the
above We onto Te. In this work, we use a scheme similar to
the one in §6.1 for wrinkle transfer, described below. Assume
Ŝe+w is the face model resulted from applying We on the
deformed reference face model Ŝe that is constructed based
on the w̃id and w̃exp (obtained in §6.2). Different from the
coarse-scale expression transfer scenario in §6.1, at this step
we need to transfer the fine-scale wrinkles from Ŝe+w to Te.

To make the linear systems (refer to §6.1) more sensitive
to wrinkles, we first adaptively subdivide the target expres-
sion face Te. The used subdivision criterion is based on the
wrinkle level on each triangle face. Specifically, as described
in §4, the wrinkle at each vertex vi is represented as the
displacement (denoted as dvi ) at the vertex along its normal
direction. Then, if all the three wrinkle displacements at the
three vertices of a triangle (assuming vi1, vi2, and vi3) are
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adaptive
subdivision

Target expression face

Reference face with 
generated wrinkles

Transfer
wrinkles

Transfer
wrinkles

Fig. 7. A comparison of our method with/without wrinkle subdivision.
Our method with wrinkle subdivision (blue arrows) can better preserve
wrinkle details on the resulting face than our method without wrinkle
subdivision (green arrow). The subdivided triangles are visualized in red.

(a)                      (b)                   (c)                    (d)

Fig. 8. The intermediate faces generated by our approach during the
wrinkle transfer process. Column (a) shows the reference face Ŝe;
Column (b) shows the reference face with wrinkles, Ŝe+w; Column (c)
shows the target expression face, Te; and Column (d) shows the final
transfer result, T̂

′
e+w.

larger than a threshold (assuming the used face meshes are
triangle meshes), that is, max (dvi1 , dvi2 , dvi3) > ε, we then
iteratively subdivide this triangle using the loop subdivision
method [55]. To this end, we can obtain the subdivided
target expression face, T

′

e .
Then, we first deform T

′

e into the above reconstructed
face Ŝe to obtain T̂

′

e ; and we also deform T
′

e into Ŝe+w
to obtain T̂

′

e+w. After that, we solve a similar optimization
problem as in Eq. 11. For clarity, we describe it as follows:

arg min
v̂1...v̂n

∑
i

‖M ′si −M
′
ti‖

2. (14)

Different from Eq. 11, in Eq. 14, M ′si denotes the affine
transformation matrices of all the triangles between T̂

′

e and
T̂
′

e+w; and M ′ti denotes the affine transformation matrices
of all the triangles between T

′

e and the to-be-solved target
expression face with the wrinkles T

′

e+w (with the new vertex
positions v̂1...v̂n). T

′

e+w is the final output of our approach.
Figure 7 shows a comparison of our method

with/without wrinkle subdivision. As shown in this figure,
our method with wrinkle subdivision can better preserve

the wrinkle details on the resulting face than our method
without wrinkle subdivision. In addition, Fig. 8 shows the
intermediate faces generated by our approach during this
process.

(a)

(b)

Fig. 9. A wrinkle transfer comparison between using Eq. 14 and using
Eq. 15. (a) shows the wrinkles on two consecutive frames are transferred
using Eq.14, (b) shows the wrinkles on the same two continuous frames
are transferred using Eq. 15.

Wrinkle transfer for animation. If we directly apply the
above method to transfer wrinkles between two animated
faces, temporal inconsistency of the wrinkles between con-
secutive frames could occur (refer to Fig. 9(a)). The reason
is that the above optimization equation (Eq. 14) is inde-
pendently solved for each frame, which cannot guarantee
the continuity of the solution across consecutive frames.
To address this issue, we change the above optimization
equation to the following Eq. 15 that considers not only the
wrinkle transfer objective function but also the transferred
wrinkle consistency between two consecutive frames (the
second regularization term in Eq. 15).

arg min
v̂1...v̂n

∑
i

‖M ′si −M
′
ti‖

2 + λ
∑
i

‖M ′ti−1
−M ′ti‖

2. (15)

Here M ′ti−1
denotes the obtained affine transformation ma-

trices at the previous frame. In our experiments, we experi-
mentally set the weight λ = 0.2.

Also, in order to ensure the same topology of the sub-
divided frames in an animation sequence, when making a
subdivision decision for a triangle, as long as the maximum
of the wrinkle displacements on the three vertices of the
same triangle in all the animation frames is larger than a
threshold (that is, maxi=1...|F | (dvi1 , dvi2 , dvi3) > ε), we will
do subdivision for this triangle in all the animation frames.
In this way, the subdivided faces in all the animation frames
are guaranteed to have the same topology. Fig. 9 shows a
wrinkle transfer comparison for animations using Eq. 15 and
using Eq. 14. From this figure, we can observe the result
based on Eq. 15 can produce more temporally consistent
wrinkles than the result based on Eq. 14.
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  (a)                                          (b)                                       (c)                                            (d)   

(1)

(2)

(3)

Fig. 10. Wrinkle synthesis results by our approach on target faces with
different shapes and expressions. The column (a) shows the target
neutral face for each row, and each column from (b)-(d) shows the syn-
thesized wrinkles for different target faces with the same expressions.
Each row from (1) to (3) shows the synthesized wrinkles for different
expressions on the same target face. As highlighted in the red boxes,
for the same expression in the same facial regions, our method can
automatically generate distinct wrinkle patterns for different target faces.

(a)                                                (b) (a)                                                (b)

(1)

(2)

(3)

Fig. 11. Comparisons of coarse-scale target expression faces (a) and
the corresponding expression faces augmented with the synthesized
fine-scale wrinkles by our approach (b). Each row shows a different
target face. From each (a)-(b) pair, we can clearly see the target ex-
pression faces augmented with our synthesized fine-scale wrinkles are
visually more realistic and expressive than the corresponding coarse-
scale faces.

In this section, we show experimental results by our
approach. First, we show novel fine-scale wrinkle gener-

ation results on coarse-scale faces with different shapes
and expressions. The used coarse-scale faces are directly
reconstructed from our bilinear face model. Second, we
show wrinkle transfer results by our approach, that is,
transfer synthesized fin-scale wrinkles from the reference
face to various coarse-scale target face models that cannot
be reconstructed from our bilinear face model.

Figure 10 shows some generated wrinkle results on
coarse-scale faces with different shapes and expressions.
Note that all the coarse-scale faces in this figure are re-
constructed using our bilinear face model. In this figure,
each row shows the synthesized wrinkles for different ex-
pressions on the same target face, and each column shows
the synthesized wrinkles for different target faces with the
same expression. As highlighted in the red boxes, for the
same expression in the same facial regions, our method
can automatically generate distinct wrinkle patterns for
different target faces.

Figure 11 shows comparisons between the coarse-scale
expression faces and the corresponding expression faces
augmented with synthesized fine-scale wrinkles by our
approach. From each column pair (i.e., (a) vs. (b)), we can
clearly observe that the expression face augmented with
the synthesized fine-scale wrinkles by our approach appear
more visually realistic and expressive.

Figure 12 shows some wrinkle transfer results by our ap-
proach. If the given target 3D faces cannot be reconstructed
from our FaceWareHouse bilinear face model, we used
our wrinkle transfer pipeline to transfer the synthesized
wrinkles to such target faces. In this figure, the row (1)
shows wrinkle transfer results for different expressions on
a given target face model obtained from Paysan et al. [54],
and the row (2) show wrinkle transfer results for different
expressions on a given target face obtained from Huber
et al. [5]. Both of the target faces in this case cannot be
reconstructed from the FaceWareHouse bilinear face model
[4]. Each (a)-(b) column pair shows the comparison between
a coarse-scale target expression face and the corresponding
one augmented with the transferred wrinkles by our ap-
proach.

Figure 13 shows multiple synthesized wrinkle results
by our approach given an input target expression face.
Specifically, to generate multiple wrinkle results by using
our WEN network, we added small random noise to the
feature vector of the input target expression face. Therefore,
our approach can generate multiple plausible wrinkles for
the user to make a selection.

Figure 14 shows the results of two randomly selected
faces that are outliers of the distribution of our WEN model.
It shows that our method has limited generalization capabil-
ity to generate wrinkle details on the outlier faces. In these
case, our approach can generate some wrinkles around the
eyes and mouth regions.

Wrinkle Interpolation. Since our method can encode
wrinkle tensors into a compact latent space, new wrinkle
tensors can also be obtained via interpolation. Specifically,
given multiple face feature vectors, we first compute the
corresponding latent vectors in the latent space. After that,
an interpolated vector can be generated via the weighted
averaging of the latent vectors. Finally, we can generate
the corresponding interpolated wrinkle tensor by using the
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(1)

(2)

(a)                                                          (b) (a)                                                     (b) (a)                                                     (b)

Fig. 12. Wrinkle transfer results by our approach. The target expression faces in the row (1) are obtained from Paysan et al. [54], and the target
expression faces in the row (2) are obtained from Huber et al. [5]. Each (a)-(b) column pair shows the comparison between a coarse-scale target
expression face and the corresponding one augmented with the transferred wrinkles by our approach.

(a) 

(b) 

Fig. 13. Three different wrinkle results are generated by our approach
based on an input target expression face. The row (a) shows the gener-
ated wrinkles on the target expression face, and the row (b) shows the
same generated wrinkles on the reference face.

WEN decoder. Figure 18 shows bi-linear wrinkle interpo-
lation results. The faces at the positions (1,1) and (1,5), as
well as the positions (5,1) and (5,5), have the same identity
but different expressions. The faces at the positions (1,1) and
(5,1), as well as the positions (1,5) and (5,5), have the same
expression but different identities. Rows (2)-(4) and columns
(2)-(4) show interpolated results.

7.1 Comparisons

We also compared the results by our approach with the
ground truth and those by existing approaches. Figure 15
shows the results of three randomly selected faces in the
test set. It shows that our method is able to reconstruct
almost the same facial wrinkles, compared to the original
extracted wrinkles by [10]. Also, it shows that our WEN
model encodes the wrinkle tensors into a compact space,

       (a)                                                   (b)                                              (c)

Fig. 14. Example results of our approach when the input faces are
outliers of the distribution of our WEN model. Column (a) shows the
randomly selected, outlier faces; Column (b) shows the resulting faces
by our approach; Column (c) shows the corresponding heat-maps (i.e.,
(b) column - (a) column) to illustrate the wrinkles.

and plausible new wrinkle, as shown in this figure, can be
well sampled and interpolated.

Figure 16 shows that our method can even produce
results with less artifacts than [10] for some cases. The
method in [10] could produce some artifacts when the
input video clips have non-frontal head poses, fast head
movement, weak lighting, etc. Also, users have to adjust
multiple parameters to produce satisfactory results, which
is time-consuming and labor-intensive. In contrast, our
method can generate realistic wrinkles through sampling
and interpolating the latent space in seconds, without the
above limitations.

Figure 17 shows comparison examples between our
method and the ground truth data [19]. It shows our method
can produce plausible wrinkle details, although our method
cannot produce the same wrinkles as the ground truth.
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Ma and Deng[10] Our Method Error Heat Map

Fig. 15. The result on three randomly selected faces in the test set by
our method, compared to the original extracted wrinkles by [10].

Ma and Deng [10] Our Method

Fig. 16. Examples that show our method can produce wrinkles with less
artifacts, compared to the work of [10]. The red rectangle highlights the
artifact around the face boundary.

7.2 User Study
We conducted a user study to evaluate the results produced
by our proposed wrinkle synthesis and transfer framework.
We recruited 20 participants (7 female and 13 male; 23 to
37 years old) to participate in our user study. 6 faces with
wrinkles synthesized by our approach (in Figure 12) were
shown to each participant one by one. For each shown
face, the participants need to answer the following questions
using a 5-likert scale: 1 (not at all), 2 (slightly), 3 (normally),
4 (well enough), and 5 (pretty well).

1) Expressiveness: How expressive are the wrinkles on
the face?

2) Matchedness: How are the wrinkles on the face
matched with face shape and expression?

3) Realism: How realistic are the wrinkles?
4) Overall: How do you evaluate the overall quality of

the wrinkles on the face?

Valgaerts et al. [19] Ours

0 mm

20 mm

Valgaerts et al. [19] Ours

Fig. 17. Comparisons between our method and the reconstructed mesh
(considered as the ground-truth) by the binocular method [19]. The top
row shows the input image and the corresponding per-vertex error map.
The bottom row shows the mesh comparisons.

        (1)                      (2)                    (3)                     (4)                      (5) 

(1)

(2)

(3)

(4)

(5)

Fig. 18. Bi-linear wrinkle interpolation results. The faces at the positions
(1,1) and (1,5), as well as the positions (5,1) and (5,5), have the same
identity but different expressions. The faces at the position (1,1) and
(5,1), as well as the positions (1,5) and (5,5), have the same expression
but different identities.

5) Coherence: How spatially and temporally coherent
are the wrinkles on the face?

Figure 19 shows the user study result. From this figure,
we can see most (more than 90%) of the participants gave
either 4 (well enough) or 5 (pretty well) ratings on the
synthesized wrinkles, in terms of all the five measures. We
also show the mean and standard deviations of the obtained
ratings in Table 3. The average scores in terms of all the
five measures are more than 4 (well enough). In particular,
our methods obtained about 4.5 mean/median scores on
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both expressiveness and coherence measures. The study
outcomes validate that our method can synthesize plausible
wrinkles on given coarse-scale faces.

Expressiveness

Matchedness

Realism

Overall

Coherence

5                                     45                                                                             50

5                                                                   75                                                                        20

10                                               55                                                                        35

10                                            50                                                                      40

5                                 45                                                                           55

Not at all Slightly Normally Well enough Pretty Well

Fig. 19. Obtained Votes count for our five questions. The numbers on
the bars represent percentile.

TABLE 3
The mean/standard deviation and median scores obtained in the study

Measure mean ± SD median
Expressiveness 4.45 ± 0.59 4.5
Matchedness 4.15 ± 0.48 4.0
Realism 4.25 ± 0.62 4.0
Overall 4.3 ± 0.64 4.0
Coherence 4.5 ± 0.59 5.0

8 DISCUSSION AND CONCLUSION

In this paper we present a VAE-based generative model to
automatically synthesize fine-scale geometric wrinkles on
novel coarse-scale 3D faces. We also introduce a complete
pipeline to transfer fine-scale wrinkles between 3D faces
with different topologies and shapes.

Our approach has the following limitations. First, since
semantic meaning is not associated to each element of the la-
tent vector in our model. Thus, our approach cannot provide
users high-level intuitive controls over the generation of
fine-scale wrinkles (e.g., control the shapes and positions of
wrinkles). Second, our method synthesizes wrinkles based
on the geometric shapes and expressions of target faces.
However, in reality, besides the shape and expression, the
wrinkles on the human face can also depend on other factors
including age and gender. Third, as a data-driven method,
the effectiveness of our method is essentially determined
by the employed training dataset. Since our used training
dataset only includes 50 different identities, if the shape
of an input target face is significantly deviated away from
the distribution of the face shapes in the training data, our
model may generate less satisfactory wrinkles. Also, the
training wrinkle data used in this work were extracted from
monocular videos. Therefore, the extract wrinkles may not
be as accurate as those by multi-view capture methods.

In the future, we plan to add novel high-level user
controls over the wrinkle generation process as well as
intuitively edit the synthesized or transferred geometric
wrinkles on 3D faces. Such systems would be practically
useful for numerous applications.
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