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Figure 1: Only using a single set of parameters, our example-based method can accurately rig various models such as quadrupled animals
(a), humans (b, c), and highly deformable models (d). Our method can even generate bone structures for challenging parts, such as the mouth
and the two ears of the cat (a), the skirt (b), and the elastic cow model (d). Our method is robust: using only 9 frames, it can generate a
skeleton with 28 bones for the cat model (a); note that even though the given example poses of the cat model have asymmetric poses, it still
can generate an almost symmetric skeleton without imposing any symmetry constraints.

Abstract

We introduce an example-based rigging approach to automati-
cally generate linear blend skinning models with skeletal structure.
Based on a set of example poses, our approach can output its skele-
ton, joint positions, linear blend skinning weights, and correspond-
ing bone transformations. The output can be directly used to set
up skeleton-based animation in various 3D modeling and anima-
tion software as well as game engines. Specifically, we formu-
late the solving of a linear blend skinning model with a skeleton
as an optimization with joint constraints and weight smoothness
regularization, and solve it using an iterative rigging algorithm that
(i) alternatively updates skinning weights, joint locations, and bone
transformations, and (ii) automatically prunes redundant bones that
can be generated by an over-estimated bone initialization. Due to
the automatic redundant bone pruning, our approach is more robust
than existing example-based rigging approaches. Furthermore, in
terms of rigging accuracy, even with a single set of parameters, our
approach can soundly outperform state of the art methods on var-
ious types of experimental datasets including humans, quadrupled
animals, and highly deformable models.
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1 Introduction

Skeleton-based mesh deformation is a widely-used method for an-
imating articulated creatures such as humans and animals. Setting
up the skeleton-based animation (also known as rigging), however,
often requires careful manual interventions in practice. Rigging a
model currently consists of two main steps: building a hierarchical
skeleton with rigid bones connected by joints, and skinning the 3D
model to define how joint rotations and translations would propa-
gate to the surface during animation. In practice, animators typi-
cally repeat the two steps many times to refine the model for best
results. This trial-and-error method is costly and time-consuming,
since its two steps are often done manually or semi-automatically.

The concept of using example poses (i.e., a sequence of deformed
mesh frames) for rigging [Schaefer and Yuksel 2007; de Aguiar
et al. 2008a; Hasler et al. 2010] has become increasingly practical
and useful in recent years. In particular, deformed mesh sequences
can be soundly reconstructed by performance capture [de Aguiar
et al. 2008b; Vlasic et al. 2008; Vlasic et al. 2009; Stoll et al. 2010]
or by dense motion capture based on commercial systems [Park and
Hodgins 2006]. Since the skeleton extracted from example poses
is typically compatible with game engines and popular animation
software such as Autodesk Maya, it can be directly used for various
animation editing, compression, and rendering applications, which
helps to reduce production cost in industry practice assuming ex-
ample poses are available.

The essential idea of these example-based rigging methods [Schae-
fer and Yuksel 2007; de Aguiar et al. 2008a; Hasler et al. 2010]
is to first perform motion driven clustering to extract rigid bone
transformations, then estimate joint locations and bone lengths us-
ing linear or non-linear least squares, and finally optimize the bone
transformations and skinning weights. However, they have the fol-
lowing limitations: First, nearly-rigid parts cannot be identified per-
fectly since motion driven clustering algorithms model neither skin
blending nor skeletal structure. As such, this step would either re-
quire non-trivial model-specific parameter tuning or result in an un-
robust skeleton. Second, each step in this pipeline is performed on
the output from the previous step; thus, each step does not model
any constraints on the previous or next steps. For example, the clus-
tering step does not model transformation blending. Likewise, after
the joint locations are determined, joint constraints would change
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the bone transformations generated at the previous step. As an end
result, errors could be significantly accumulated (e.g., from the root
joint to leaf joints). Due to these issues, these rigging methods have
limited accuracy and robustness and therefore fall short of meeting
the demand. Examples in Fig. 2 show two common limitations of
these rigging methods.

Figure 2: Examples that show two common limitations of current
rigging methods: (i) an over-estimated bone initialization may gen-
erate inaccurate and redundant bones (indicated by red arrows);
(ii) an inaccurate estimation of bone transformations (indicated by
red arrows with ellipse) causes noticeable deformation errors when
the bones are connected by joints (see the change of the legs). The
examples in this figure are generated using [Hasler et al. 2010].

In this paper, we address the above limitations and introduce a
robust and accurate rigging framework that takes a set of exam-
ple poses as input and produces its corresponding Skeleton-based
Linear Blend Skinning (LBS) model. The obtained LBS model
includes skeletal structure, skinning weights, joint locations, and
bone transformations corresponding to all the example poses. As
shown in Fig. 1, our method can robustly generate high-quality rig-
ging models from a small set of example poses. Compared to pre-
vious methods [Schaefer and Yuksel 2007; de Aguiar et al. 2008a;
Hasler et al. 2010], our method offers the following two advantages:

• Robustness. By automatically pruning redundant bones, our
approach is more robust than the previous methods which of-
ten suffer from an over-estimated bone initialization.

• Accuracy. By formulating the solving of a LBS model with
skeleton as a constrained optimization, our iterative approach
can obtain more accurate joint locations, bone lengths, corre-
sponding joint rotations, as well as the reconstruction of the
example poses without accumulation of fitting errors.

The key component of our method is an Iterative Rigging algorithm
(§6), in which we alternatively update skinning weights (§6.1), joint
locations, and bone transformations (§6.2); and automatically prune
redundant bones (§6.3). Specifically, in this method we make the
following three technical contributions:

1. Joint constraints optimization. We add soft constraints to
the framework of skinning decomposition without skeleton
[Le and Deng 2012], which models the common rotation be-
tween two rigid bone transformations. Using this new for-
mulation, we convert unorganized bone transformations [Le
and Deng 2012] to skeletal bones with a hierarchical struc-
ture, and propose an optimization algorithm (§6.2) to solve
joint locations with a high accuracy.

2. Skeleton pruning. To address the robustness issue, instead of
attempting to find the proper number of bones at the initializa-
tion step, we first generate an over-estimated bone estimation
and then iteratively prune redundant bones (§6.3). The redun-
dant bones are determined by utilizing the weight smoothness
regularization below.

3. Weight smoothness regularization. To handle noisy inputs
and solve the skinning fracture problem resulting from the

commonly used weight sparseness constraint, we introduce a
smoothness constraint into the skinning weight solver (§6.1).

2 Related Work

Skinning and rigging. The most widely used skinning model for
character animation to date is skeleton-based skinning. A skeleton
pose can be used to determine the skin deformation, with the con-
sideration of physical properties including elasticity, contact, col-
lision [McAdams et al. 2011; Hahn et al. 2012; Liu et al. 2013],
and even the anatomy of creatures [Lee et al. 2009; Ali-Hamadi
et al. 2013]. To achieve real time performance, geometric skinning
methods can simply blend bone transformations to produce the skin
using a set of blending weights for each vertex [Merry et al. 2006;
Kavan et al. 2008; Jacobson and Sorkine 2011; Kavan and Sorkine
2012; Le and Deng 2013; Vaillant et al. 2013]. Many automatic
methods have been proposed to generate the skinning weights from
a static 3D model [Baran and Popović 2007; Jacobson et al. 2011].
On top of these skinning weights, artists can also make manual ad-
justments (weight painting). However, it is non-trivial to obtain the
optimal set of weights for realistic skinning, especially for highly
deformable models. One possible solution to this issue is to use
a set of example poses to solve for the optimal skinning weights
[Wang and Phillips 2002; Mohr and Gleicher 2003]. Recently, skin-
ning decomposition techniques were also proposed to extract bone
transformations from example poses [James and Twigg 2005; Ka-
van et al. 2010; Le and Deng 2012]. However, since their extracted
bone transformations are not organized in any skeletal structures,
they are not quite suitable for animation editing purposes.

Skeleton extraction from a single shape. Researchers have pur-
sued two different directions to extract skeletons from a single static
pose, serving different purposes. In one direction, curve skele-
ton extraction typically focuses on discovering the topology of the
skeleton (e.g., handle or loop) rather than its exact shape [Au et al.
2008; Tagliasacchi et al. 2009; Livny et al. 2010; Huang et al.
2013]. In the other direction, some methods focus on generating
skeletons for animation [Baran and Popović 2007]. Since the only
input of these methods is a single pose, the quality of their output
is limited.

Motion-based skeleton extraction. Using motion data, the skele-
ton and joint locations can be determined more easily than using a
static pose alone. Anguelov et al. [2004] proposed an early work
to deal with unorganized point cloud data. Due to the lack of tem-
poral coherence, their method is primarily designed to identify and
track rigid components of the model. Kirk et al. [2005] use marker-
based mocap data as the input for skeleton extraction, exploiting
the temporal coherence between mocap frames. Since both of the
methods use low spatial resolution data, they only focus on solving
the joint locations between two rigid body components, discard-
ing the blending between bodies. Later, several methods have been
proposed to work with a set of example poses [Schaefer and Yuk-
sel 2007; de Aguiar et al. 2008a; Hasler et al. 2010]. Since the
example poses offer much higher spatial resolutions than mocap
data, they can often produce quality skeletons along with the LBS
model. However, as mentioned in §1, besides requiring non-trivial
model-specific parameter tuning, they have limited accuracy and
robustness due to the significant accumulation of fitting errors.

3 Method Overview

The input data for our method is a set of example poses with tem-
poral coherence, i.e., different poses (meshes) that share the same
topology. Let F be the total number of example poses (frames),
N be the number of vertices in each mesh, and vfi ∈ R3 be the



3D position of the i-th vertex in frame f . The input also includes
the rest pose (a.k.a., the dressing pose), where the position of the
i-th vertex in the rest pose is denoted as ui ∈ R3. From the in-
put data, our method generates skinning weights, skeletal structure,
joint locations, and corresponding bone transformations using the
following three main steps (Fig. 3).

Initialization (§4). From the given example poses, we first iden-
tify nearly-rigid parts and use each part to initialize one rigid bone
transformation sequence. At this step, we favor production of an
over-estimated number of bones. Redundant bones will be later re-
moved at the skeleton pruning step (§6.3).

Topology reconstruction. Using the initialized bone transforma-
tions, we perform Skinning Decomposition with rigid bones [Le
and Deng 2012] to obtain the LBS without skeleton. Then, we
reconstruct the skeleton topology using minimum spanning tree al-
gorithms on a weighted graph that is inferred from the LBS (§5).

Iterative rigging. This is the main component of our approach
that employs block coordinate descent method (§6). In an itera-
tive manner, we alternatively update all the skinning weights (§6.1),
joint locations, and bone transformations (§6.2); and automatically
prune redundant bones (§6.3). Our key idea of constraining two
bone rotations around the joint is to add soft constraints to the bone
transformations update.
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Figure 3: The pipeline of our skeletal rigging approach

4 Initialization

From the given deformed mesh sequence (i.e., example poses), we
perform motion driven clustering to obtain B clusters, where ver-
tices in the same cluster have similar rigid motions. For each clus-
ter j, we fit a rigid bone transformation [Rf

j |T
f
j ] to relate the vertex

positions at the rest pose to the vertex positions at frame f , where
Rf

j ∈ R3×3 is an orthogonal rotation matrix and T f
j ∈ R3 is a

translation vector.

Motion-driven vertex clustering. We apply the Linde-Buzo-Gray
(LBG) algorithm [Linde et al. 1980] to cluster the vertices with
similar rigid transformations. We first initialize one cluster to in-
clude all the vertices. Then, by extending the cluster splitting-EM
strategy [Linde et al. 1980] to handle the mesh sequence, we divide
this initial cluster into two clusters. Afterwards, the same cluster
splitting-EM strategy is repeatedly called to further generate 4, 8,
16, and 32 clusters. We stop splitting at 32 clusters since all the
datasets used in this paper have no more than 32 bones. How-
ever, the number of clusters can be more than 32 if needed (refer
to Fig. 9), e.g., complex models are inputted.

Cluster splitting-EM. This strategy consists of two sequential
steps: (i) splitting one cluster into two, and then (ii) refining the
resulting clusters using Expectation-Maximization (EM). The de-
tails of the two steps are described below.

• Cluster splitting. Since we perform motion-driven clustering
without explicitly computing the feature vector for each ver-
tex, the feature-based cluster splitting step in the original LBG
algorithm [Linde et al. 1980] cannot be directly applied. In-
stead, we design a new cluster splitting scheme by consid-
ering the following two criteria: (i) minimizing the approxi-
mation error, and (ii) keeping the vertices in one cluster close
together. To split a cluster j, we first computeO, the rest-pose
centroid of all the vertices belonging to j. Then, we find the
seed vertex s belonging to j such that the product of its recon-
struction error, e(s), and the distance from its rest-pose posi-
tion to the rest-pose centroid, d(us, O), is maximum. Eq. (1a)
shows its computing process, where L(i) denotes the cluster
label of vertex i. Finally, for all the vertices belonging to j, we
use the Euclidean distances from their rest-pose positions to
us as the criterion to evenly split them into two sets. Concep-
tually, we want to use the seed s and its neighbors to initialize
the new cluster centers (i.e., bone transformations). The seed
s is chosen as the off-center vertex with a large reconstruction
error so that the resulting new clusters can maximally reduce
the overall reconstruction error, as illustrated in Fig. 4.

s = arg max
i
{d(ui, O)e(s)} s.t. L(i) = j (1a)

where: d(ui, O) = ‖ui −O‖2

e(i) =

√√√√ 1

F

F∑
f=1

∥∥∥∥[Rf
j |T

f
j ]

[
ui

1

]
− vfi

∥∥∥∥2
2

(1b)
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Figure 4: An illustration of our cluster splitting strategy

• Cluster refining. Similar to the work proposed by Le and
Deng [2012], we represent each cluster by a rigid transfor-
mation, and EM is done by alternatively updating the cluster
label L(i) for each vertex i at the E-step, and updating the
center [Rf

j |T
f
j ] for each cluster j at the M-step. After the M-

step, to ensure the robustness, we remove all the insignificant
clusters, which are clusters with members (i.e., vertices) fewer
than 0.1% of the total number of the mesh vertices.

Connected patches generation. The motion-driven clustering al-
gorithm only assigns a vertex to the cluster using the smallest re-
construction error criterion, ignoring the mesh connectivity infor-
mation. Thus, more than one rigid part might be assigned to a clus-
ter if the parts have similar motions. To keep only one rigid part per
bone, we simply find all the connected components (i.e., patches
of vertices) for each cluster, and then initialize a new rigid bone
transformation for each connected component.

The LBG algorithm is as fast and simple as K-means clustering [Le
and Deng 2012], yet it is still sufficiently robust compared to more
costly solutions such as Mean Shift clustering [James and Twigg
2005] and Agglomerative clustering [Schaefer and Yuksel 2007].
Having a few redundant clusters at the initialization step would af-
fect our final result negligibly at most, thanks to our skeleton prun-
ing step that removes redundant bones. Thus, an accurate estima-
tion of the number of clusters is not required in the initialization
step in our approach.



5 Topology Reconstruction

We reconstruct the skeleton topology using both bone transforma-
tions and mesh connectivity information. First, we run the skinning
decomposition without a skeleton [Le and Deng 2012] for 10 it-
erations to refine the initialized bone transformations and generate
the corresponding skinning weights. To improve the robustness,
we start with only one non-zero weight per vertex and increase the
number of weights-per-vertex by one every 3 iterations. The output
of this step is bone transformations [Rf

j |T
f
j ] ∈ R3×4 and skinning

weights wij ∈ R, where i, j, and f denote a vertex index, a bone
index, and a frame index, respectively.

We construct a weighted graph G with B nodes (corresponding to
B bones). The weight g(j, k) between bone j and bone k is com-
puted by Eq. (2), which puts a strong preference for having the joint
(j, k) if the joint location fitting error (numerator) is small and the
blending of two bones (denominator) is large. The joint fitting error
is computed as the sum of squared difference of the center of rota-
tion of two bones j and k after their bone transformations. Here,
the center of rotation Cjk of two bones j and k is defined at the
rest pose, and its position is computed by [Anguelov et al. 2004].
Intuitively, Cjk is the point such that its locations after both bone
transformations in all frames are most similar; thus, the joint loca-
tion fitting error (the numerator in Eq. (2)) measures the quality of
having the joint between bone j and bone k. The blending of two
bones (the denominator in Eq. (2)) measures the relative position
of the two bones, in which a larger blending means the two bones
are more likely to share a common joint; and vice versa. As the
result, g(j, k) is small if bone j and bone k have a high probability
of sharing a common joint.

g(j, k) =

∑F
f=1

∥∥∥∥([Rf
j |T

f
j ]− [Rf

k |T
f
k ]

)[
Cjk

1

]∥∥∥∥2
2∑N

i=1 wijwik

(2)

Finally, we determine the skeleton S as the Minimum Spanning Tree
(MST) of G [Kruskal 1956], which is similar to the idea of previous
methods [Kirk et al. 2005; Schaefer and Yuksel 2007; de Aguiar
et al. 2008a; Hasler et al. 2010]. For the sake of convenience, we
write (j, k) ∈ S to denote (j, k) is an edge of the tree S, or bone
j and bone k share a common joint. This common joint is also
denoted as (j, k), and the joint position (at the rest pose) is denoted
as Cjk, which is also the center of rotation of two bones j and k.

In practice, the root of the skeleton is often manually specified. In
this work, we simply set the root as the joint that is the closest to
the centroid of the rest pose for visualization purpose. Given the
root of the skeleton and each bone transformation, we can straight-
forwardly compute the joint rotations and bone lengths. However,
to ensure the readability of this paper we only use the raw repre-
sentation of the skeleton, that is, an unrooted skeleton with bone
transformations.

For the sake of robustness, we suggest to compute the center of
rotation between two bones using [Anguelov et al. 2004] rather
than [Schaefer and Yuksel 2007]. We found that the pseudo-inverse
solver in [Schaefer and Yuksel 2007] tends to find the wrong sub-
space if the bone rotations are degenerate. In contrast, the regu-
larization term in [Anguelov et al. 2004] only depends on the cen-
troid of two bones, which is more robust to estimate. As a trade-
off, [Anguelov et al. 2004] gives a slightly larger approximation
error than [Schaefer and Yuksel 2007]. Our implementation of
[Anguelov et al. 2004] sets the regularization weight γ = 10−2F .

6 Iterative Rigging

After initializing bone transformations and determining the skele-
ton topology, previous approaches directly compute the joint posi-
tions and skinning weights [Schaefer and Yuksel 2007; de Aguiar
et al. 2008a; Hasler et al. 2010]. However, since the initialization
of the bone transformations lacks both robustness and the consid-
eration of joint rotation constraints, the output skinning model can
be degraded or even inaccurate, as shown in the examples in Fig. 2.
We solve this problem by imposing soft joint constraints to the op-
timization function and pruning redundant bones.

Problem formulation. We minimize the objective function E in
Eq. (3a) to find the optimized LBS model with skeletal constraints.
It includes the following three terms:

• Data fitting term ED (Eq. (3b)) minimizes the mesh recon-
struction error, similar to the work of [Le and Deng 2012].

• Weight regularization term ES (Eq. (3c)) favors the smooth-
ness of skinning weights (§6.1) and drives the removal of re-
dundant bones (§6.3). We derive this term from the fairness
and smoothness conditions on the manifold, which is simi-
lar to [Kim et al. 2010]. wj ∈ RN is the column vector of
N skinning weights of bone j, and L ∈ RN×N is a discrete
Laplacian matrix of the input mesh, where Lik represents the
similarity between the weights of two neighboring vertices i
and k (refer to Eq. (4a) for detailed definition of L).

• Joint constraint term EJ (Eq. (3d)) keeps any two connected
bone transformations ∈ S rotate around their common joint.
This soft constraint is derived from [Anguelov et al. 2004;
Schaefer and Yuksel 2007]. If two bones j and k share the
common joint (j, k), this constraint favors the rest-pose posi-
tion of the joint, Cjk, going to the same position after bone
j transformation and bone k transformation (also refer to the
explanation of Eq. (2) in §5).

The minimization of E is also subject to the same set of con-
straints as in [Le and Deng 2012]. It includes convex constraints
(non-negativity and affinity) and sparseness constraints (no more
than 4 non-zero weights per vertex) on the skinning weights wij

(Eq. (3e)), and includes orthogonal constraints (Eq. (3f)) on the
bone transformations Rf

j (all the bone transformations need to be
rigid).

E =ED + ωES + λEJ (3a)

Where: ED =
1

NF

N∑
i=1

F∑
f=1

∥∥∥∥∥
B∑

j=1

wij [R
f
j |T

f
j ]

[
ui

1

]
− vfi

∥∥∥∥∥
2

2

(3b)

ES =

B∑
j=1

wj
TLwj (3c)

EJ =
1

F

∑
(j,k)∈S

F∑
f=1

∥∥∥∥([Rf
j |T

f
j ]− [Rf

k |T
f
k ]

)[
Cjk

1

]∥∥∥∥2
2

(3d)

Subject to: wij ≥ 0,
B∑

j=1

wij = 1, ‖wi‖0 ≤ 4, ∀i, j (3e)

Rf
j

T
Rf

j = I , detRf
j = 1, ∀j, f (3f)

Optimization. We optimize the objective function Eq. (3a) using
Block Coordinate Descent algorithm [Le and Deng 2012]. This



algorithm alternatively updates skinning weights, joint positions,
and bone transformations while keeping the remaining blocks fixed
(Fig. 3). Specifically, the weights update minimizes E with re-
spect to the data fitting and weight regularization terms (§6.1); the
joint positions update minimizes the joint constraint term using
[Anguelov et al. 2004]; the bone transformations update minimizes
the data fitting and joint constraint terms (§6.2). We repeat this al-
ternative update process for a user-specified maximum number of
times, which is empirically set to 20 in our experiments. During
this process, we always prune redundant bones (§6.3) after each
bone transformations update step. If a redundant bone is pruned,
we will restart the iterative update process by resetting the itera-
tion counter to zero. In Eq. (3a), ω is a constant determined by the
Laplacian matrix (§6.1); λ starts with 1 and is multiplied by 1.5
after each iteration.

6.1 Skinning Weights Update

Conventional least squares (LS) skinning weights solvers [James
and Twigg 2005; Schaefer and Yuksel 2007] are sensitive to noisy
data. When the sparseness constraint is imposed, the LS solver
might generate skinning fractures, i.e., visible discontinuities on the
surface (examples are shown as the ω = 0 case in Fig. 5), as some
neighboring vertices are associated with different bones. Thus, we
add a weight regularization term to make our algorithm robust.

Rigidness Laplacian regularization. Our Laplacian L is com-
puted by Eq. (4a), where the rigidness weight dik penalizes the
maximum change of the Euclidean distance between vertex i and
vertex k with respect to the rest pose (Eq. (4b)). Intuitively, if ver-
tex i and vertex k belong to the same nearly-rigid part, the distance
between them should not change much, resulting in a large rigid-
ness weight dik and highly similar skinning weights for vertex i
and vertex k (i.e., wi and wk).

Lik =


1 if k = i

− dik∑
h∈N(i) dih

if k ∈ N (i)

0 otherwise.
(4a)

Where: N (i) denotes all the 1-ring neighbors of vertex i

dik =
1√

1
F

∑F
f=1

(∥∥∥vfi − vfk∥∥∥
2
−
∥∥∥ui − uk

∥∥∥
2

)2
(4b)

With the proposed matrix L, we empirically set ω = 10−3 for
all the experiments in this paper. This parameter is determined by
first resizing all the datasets to tightly fit their rest poses in a unit
sphere and then observing the deformation smoothness for different
ω values, examples of which are shown in Fig. 5.

Iterative local optimization. Without the smoothness term Es,
skinning weights can be updated per-vertex [James and Twigg
2005; Le and Deng 2012] since the weights of each vertex are in-
dependent of those of other vertices. In our case, the weights of
all the vertices are related to each other in the smoothness term Es

(refer to Eq. (3c)). Unfortunately, a global weights update of all
the vertices is impractical with a very large number of unknowns
(N × 4). Instead, we use an iterative local optimization strategy
similar to the one used in [Landreneau and Schaefer 2010]. Specif-
ically, we iterate through all the vertices one by one (with the given
order in the input). For each vertex î, we fix the weights of its one-
ring neighbors and minimize the objective function, Eq. (3a), with

Figure 5: The effect of different weight smoothness regularizations.
Compared to the graph Laplacian [Merry et al. 2006; Kim et al.
2010], our rigidness Laplacian regularization offers better smooth-
ness while still preserving the global shape. Note that how the
graph Laplacian over-smooths the fracture while it starts to change
the global shape (indicated by red circles). Our rigidness Lapla-
cian is robust as demonstrated by the similar results with different
ω values.

respect to weights wî ∈ RB . Then, this problem becomes a lin-
ear least squares problem with convex and sparseness constraints
as follows:

min
w

î

1

NF

F∑
f=1

∥∥∥∥∥∥
B∑

j=1

wîj [R
f
j |T

f
j ]

[
uî

1

]
− v

f

î

∥∥∥∥∥∥
2

2

+ ω

N∑
i=1

Lîi

∥∥wî − wi

∥∥2
2

(5)

The above least squares problem can be solved in a similar way as
[James and Twigg 2005]. Specifically, we handle the sparseness
constraint by greedily selecting 4 weights with smallest residuals
when used to individually estimate the objective function, Eq. (5).
Then, we perform non-negative linear least squares with the affinity
constraint on the set of 4 selected weights to compute their values.
Note that its size is relatively small since L is a sparse matrix. As
suggested by Landreneau and Schaefer [2010], we iterate the local
solver a few times proportional to the number of mesh vertices.
Since these iterations are mixed with the iterations of the global
block coordinate descent, a small number of iterations are typically
sufficient to reach the convergence in our experiments, e.g., 0.05
percent of the total number of the mesh vertices.

Note that similar solutions of using graph Laplacian for skinning
weights regularization have been proposed [Merry et al. 2006; Kim
et al. 2010]. However, in their methods, the Laplacian matrix is
computed only based on the graph of a single mesh; it is insensi-
tive to the deformation over the whole mesh sequence. In contrast,
our rigidness Laplacian regularization takes the deformation of the
whole mesh sequence into consideration (Fig. 5).

6.2 Bone Transformations Update

When updating the bone transformations, our main focus is to en-
force the joint constraints while still achieving a low approximation
error. The main idea of this step is to employ the solution to the
Absolute Orientation problem with blending to relate two sets of
points [Le and Deng 2012], while the joints are treated as addi-
tional points with a large weight, λ. When λ is increased, bones are
constrained to rotate more strictly around the joints (Fig. 6).

At this bone transformations update step, we need to minimize the
objective function (Eq. (3a)) with respect to the bone transforma-
tions [Rf

j |T
f
j ]. To constrain the rotation matrix Rf

j to be orthog-



Figure 6: (Left) Without joint constraints, the bone transformations
generated by [Le and Deng 2012] do not always rotate around the
joints. (Right) With the soft joint constraints, bones rotate more
strictly around the joints. Since bone transformations are alterna-
tively updated with joint locations, our model can converge to a
local optimum with a good approximation of the input.

onal, we employ the optimization strategy in [Le and Deng 2012],
where bones are updated one by one (with the fixed order of the list
of bones) while keeping the remaining bones fixed.

The transformation of bone ĵ at frame f is updated by minimizing
the objective function in Eq. (6a), which contains two parts. The
first part corresponds to the data fitting term (Eq. (3b)) whose op-
timal solution brings the rest pose ui to the residual qfi (Eq. (6b)).
The second part corresponds to the joint constraints (Eq. (3d)) that
enforce [Rf

ĵ
|T f

ĵ
] to bring every joint Cĵk of bone ĵ to its expected

position Ψf
k(Cĵk) after bone k transformation. Note that the weight

smoothness term ES in Eq. (3c) can be dropped since [Rf
j |T

f
j ] is

not involved in ES .

minEf

ĵ
=

1

N

N∑
i=1

∥∥∥∥wiĵ [R
f

ĵ
|T f

ĵ
]

[
ui

1

]
− qfi

∥∥∥∥2
2

+

λ
∑

(ĵ,k)∈S

∥∥∥∥[Rf

ĵ
|T f

ĵ
]

[
Cĵk

1

]
−Ψf

k(Cĵk)

∥∥∥∥2
2

(6a)

Where: qfi = vfi −
B∑

j=1,j 6=ĵ

wij [R
f
j |T

f
j ]

[
ui

1

]
(6b)

Ψf
k(Cĵk) = [Rf

k |T
f
k ]

[
Cĵk

1

]
(6c)

The optimal solution to minimize the objective function Eq. (6a)
is to combine the solution proposed by Le and Deng [2012] with
the solution to the Weighted Absolute Orientation problem [Kabsch
1978]. We first need to compute the center of rotation p∗ for the rest
pose (Eq. (7a)) and the center of rotation qf∗ for frame f (Eq. (7b)).
Note that, in Eqs. (7a) and (7b),

∣∣∣(ĵ, k) ∈ S
∣∣∣ denotes the number of

the edges that are connected with ĵ in S.

p∗ =

1
N

∑N
i=1 w

2
iĵ
ui + λ

∑
(ĵ,k)∈S Cĵk

1
N

∑N
i=1 w

2
iĵ

+ λ
∣∣∣(ĵ, k) ∈ S

∣∣∣ (7a)

qf∗ =

1
N

∑N
i=1 wiĵq

f
i + λ

∑
(ĵ,k)∈S Ψf

k(Cĵk)

1
N

∑N
i=1 w

2
iĵ

+ λ
∣∣∣(ĵ, k) ∈ S

∣∣∣ (7b)

Then, we subtract the center of rotation from each vertex and each
joint as follows:

pi = ui − p∗; C ĵk = Cĵk − p∗ (8a)

qfi = qfi − wiĵq
f
∗ ; Ψ

f
k(Cĵk) = Ψf

k(Cĵk)− qf∗ (8b)

The points after subtraction are concatenated into matrices P,Q ∈
R3×(N+|(ĵ,k)∈S|) as follows:

P =
[w1ĵ

N
p1 . . .

wNĵ

N
pN

∣∣∣ ∀(ĵ,k)∈SλC ĵk

]
(9a)

Q =

[
1

N
qf1 . . .

1

N
qfN

∣∣∣∣∀(ĵ,k)∈SλΨ
f
k(Cĵk)

]
(9b)

Finally, the optimal transformation of bone ĵ at frame f is com-
puted by performing Singular Value Decomposition on PQT as
follows (Eq. (10a)):

Rf

ĵ
= ϑµT; T f

ĵ
= qf∗ −Rf

ĵ
p∗ (10a)

Where: µςϑT = PQT (10b)

6.3 Skeleton Pruning

Figure 7: Redundant bones in the left panel are pruned to achieve
the neat skeleton in the right panel. As illustrated in the two yel-
low boxes, a redundant bone j is identified by utilizing the weight
regularization term to force its weights degenerate.

Since the initialization step (§4) considers neither transformation
blending nor skeletal structure, it might generate some redundant
bones. Typically, the redundant bones are located in highly de-
formable regions, e.g., around the joints, as they cause large ap-
proximation errors at the motion driven clustering step. Later, af-
ter the LBS resolves the highly deformable regions, the redundant
bones are no longer needed and thus should be removed. Unfortu-
nately, since the redundant bones do not violate any conditions in
the LBS formulation, accurately identifying them is difficult. For
this reason, the solution optimized by a general data fitting with al-
ternative skinning weights update and bone transformations update
[Le and Deng 2012] would still retain the redundant bones in order
to minimize the LBS deformation error.

Instead of conducting a brute-force search for the redundant bones,
we utilize the weight regularization term to force their weights de-
generate. We illustrate an example of this strategy in two yellow
boxes in Fig. 7. As illustrated in the yellow box in the left panel,
the bone j (red) is initialized at a potential joint between the bone
h (blue) and the bone k (green). Although the blending between h
and k can closely approximate the deformation, having j is still a
valid solution for the best approximation. By adding the weight reg-
ularization term, our minimized objective function (Eq. (3a)) makes



the weights of j very close to zero, in order to improve the smooth-
ness of the skinning weights. As the result, the bone j becomes
degenerate and can be removed. In our experiments, we found that
the weights of the redundant bones converge to zero quite slowly.
For this reason, we remove the redundant bone j if the sum of
its squared weights is smaller than 1% of the largest sum of the
squared weights among all the bones. Mathematically, we remove
the bone j if its weights satisfy the condition described in the fol-
lowing Eq. (11).

Remove bone j if
N∑
i=1

wij
2 < 10−2 max

k

{
N∑
i=1

wik
2

}
(11)

7 Results and Comparisons

Datasets. We evaluated our approach on 9 test datasets (Table 1)
obtained from various publicly available sources: the cat-poses,
horse-poses, lion-poses, and horse-gallop were obtained from
[Sumner and Popović 2004]; the hand was obtained from [Utah
2013]; the dance and cow were obtained from [Briceño et al. 2003];
the scape was obtained from [Anguelov et al. 2005]; and the samba
was obtained from [Vlasic et al. 2008]. To test the robustness of our
approach, we only used a single set of parameters for all the exper-
iments on all the test datasets in this paper (see previous sections
for parameter selection discussion). Please refer to the enclosed
supplemental video for the animation results by our approach.

Fig. 8 shows the skeletons extracted from 3 test datasets by our ap-
proach as well as their corresponding cluster initialization results.
Despite generating over-estimated clusters at the initialization step,
our approach successfully pruned redundant bones, especially for
the dance and hand models. Fig. 9 demonstrates the robustness and
effectiveness of our skeleton pruning for handling different num-
bers of clusters from the initialization step. Our approach can pro-
duce similar final skeletons with consistent structure on the trunk
and legs, by pruning most of the redundant bones. Note that minor
differences only appear on certain highly deformable regions such
as the tail and feet.

Figure 8: The skeletons extracted from 3 datasets by our approach
(from left to right): cat-poses, dance, and hand. The clustering
results obtained at the initialization step are also illustrated via a
color-coded scheme. Using the same set of parameters, our ap-
proach can robustly determine the optimal number of bones in the
skeletons using skeleton pruning.

In Fig. 10, we compare our approach with three state of the art ap-
proaches [Schaefer and Yuksel 2007; de Aguiar et al. 2008a; Hasler
et al. 2010]. For a fair comparison, we use the number of bones
generated by our approach as one of the input parameters to the
three state of the art methods. In addition, other parameters in the
three state of the art approaches are set as suggested by their au-
thors. While our approach can generate sound results for all the

Figure 9: The extracted horse-gallop skeletons with different clus-
ter initializations. Despite very different numbers of initialized clus-
ters, our approach can output similar final skeletons with consistent
structure on the trunk and legs; minor differences on the tail and
feet are due to the high deformations on these regions.

test datasets, in general the other three approaches suffer from the
following two issues:

1. Redundant bones. The lion-poses, horse-gallop, and scape
generated by both [Schaefer and Yuksel 2007] and [Hasler
et al. 2010] have many redundant bones, since the cluster-
ing algorithms in their approaches result in an over-estimated
number of bones in some highly-deformable regions.

2. Inaccurate joint locations. The joints at the back legs of the
lion-poses are inaccurately estimated by both [de Aguiar et al.
2008a] and [Hasler et al. 2010], and the joints at the legs of
the scape are inaccurately estimated by [Schaefer and Yuksel
2007]. We suspect this issue is due to the inaccurate estima-
tion of bone transformations in some highly deformable parts.

In Table 1, we show quantitative comparisons among all the four
methods (our method, method II - [Schaefer and Yuksel 2007],
method III - [de Aguiar et al. 2008a], and method IV - [Hasler et al.
2010]). In term of the approximation power (measured by lower
RMSE), our method soundly outperforms all the other three meth-
ods thanks to its iterative rigging. However, our method is slower
than both the method II and the method III because our method
needs many iterations. Fig. 11 shows examples of visual distortion
on the reconstructed hand poses with respect to different RMSE
values.

Figure 11: Examples of visual distortion on the reconstructed hand
poses with respect to different RMSE values (pay attention to the red
circled areas). Fig. 10 shows the corresponding skeletons.

8 Discussion

Performance. Our method can only prune a small number of bones
at a time, and thus its iterative rigging may need to be repeated
many times if the number of initialized bones is significantly over-
estimated. We found a positive correlation between the running
time of our method and the number of bones pruned. Therefore,
if the number of initialized bones is much larger than the num-
ber of bones in the final skeleton, our method takes a significant
amount of time to prune redundant bones. Fig. 12 visualizes an ex-



Figure 10: Comparisons between our method and three state of the art approaches. The five test datasets shown in this figure are (in the
clockwise direction starting from the top-left corner): cat-poses, lion-poses, scape, horse-gallop, and hand. For a fair comparison, we set
the same number of bones for all the four methods. Only our method can generate sound outputs for all the 5 datasets. The issues in the
results are indicated by red arrows.

Dataset N F B
Our method Method II Method III Method IV

Time RMSE Time RMSE Time RMSE Time RMSE

cat-poses 7207 9 28 5.8 0.25 0.1 0.68 6.9 1.04 17.2 0.63
horse-poses 8431 10 27 7.7 0.21 0.2 0.54 6.2 1.24 20.0 0.75
lion-poses 5000 9 30 4.1 0.27 0.1 0.83 4.0 1.62 11.7 1.14
horse-gallop 8431 48 27 41.9 0.22 0.8 0.44 33.3 1.10 80.3 0.88
hand 7997 43 18 65.1 0.18 0.6 0.23 20.0 0.42 41.9 0.18
dance 7061 201 16 148.7 0.22 2.5 0.76 61.8 0.78 168.0 0.53
scape 12500 70 23 252.1 0.42 1.7 1.03 60.7 1.18 410.4 1.24
samba 9971 175 22 348.2 0.56 3.3 1.29 95.1 1.57 296.0 1.79
cow 2904 204 11 72.3 1.52 1.0 5.41 16.0 5.61 47.9 5.58

Table 1: Quantitative comparisons among all the four methods.
The reported RMSE is normalized by the bounding volume diago-
nal [Schaefer and Yuksel 2007; Hasler et al. 2010]. Specifically,
RMSE = 100 ×

√
ED/d, where ED is the data fitting error in

Eq. (3b), and d is the diagonal of the bounding box of the rest pose.
The error is computed on the output using the joint rotation repre-
sentation to strictly enforce the joint constraints. The running time
(in minutes) was recorded on the same off-the-shelf computer with
an Intel Xeon E5405 2.0GHz CPU. All the methods in this compar-
ison were implemented in C++ with single thread.

ample of its detailed computation breakdown, which shows that a
more proper initialization of bones would significantly shorten the
computational time of our method. Due to potentially long running
time, our current method is only suitable for offline applications.
A potential solution to speed up the performance is to incorporate
skeleton templates or certain user interactions into our approach,

which is a part of our future work.

50 min 100 min 0 min 150 min 250 min 200 min 

Skinning Weights (×4) Bone Trans. J P 

300 min 

I 32 ×6 31 29 ×12 28 ×4 27 ×10 26 ×8 25 ×9 24 ×14 23 ×13 22 ×20 

I Initialization 

348 min 

Skeleton-Reconstruction 
Rigging-Iterations 

Last-Rigging-Iteration 

 J = Joints Update 
P = Skeleton Pruning 

Figure 12: Detailed computation breakdown of our method on the
samba model. The number inside a Skeleton-Reconstruction block
denotes the number of bones at the current step. The number inside
a Rigging-Iterations block denotes the number of iterations exe-
cuted at the iterative rigging step. Each rigging iteration includes
skinning weights update, joint positions update, bone transforma-
tions update, and skeleton pruning. The computational times of
all the rigging iterations are approximately the same; one detailed
breakdown is illustrated in the Last-Rigging-Iteration block.

Data dependency. Due to its data-driven (i.e., example-based) na-
ture, rigging results by our approach largely depend on the quality
of input example poses. We found that the limited motion range
and noise of input example poses could affect the outcome of our
approach at some cases. For example, the asymmetric skeletons
of the dance model (in Fig. 1 and Fig. 8) and the samba model (in
Fig. 1 and Fig. 13) are due to noise, asymmetry, and the limited mo-
tion ranges of some joints in the example poses. The incorrect joint
of the hand model (in Fig. 10) is due to the very similar motions of
the pinkie and index fingers in the example poses.

Approximation power. Results in §7 demonstrate that our ap-
proach is robust and accurate in its handling of articulated, nearly-
rigid models. We also tested our approach with several highly
deformable models although this is not one of the targeted appli-
cations for any skeleton extraction or rigging methods. The re-



Figure 13: Despite the high deformation on the skirt part of the
samba model, our approach is still able to generate a reasonable
skeletal structure where the skirt is rigged by some bones originated
from the hip. Meanwhile, the three previous approaches cannot
extract similar skeleton patterns.

Figure 14: Our method can even rig an elastic model such as this
stretched cow. The top row shows the resulting skeletons in the rest
pose. Compared with the reconstructed result by our method, the
reconstructed poses by the three previous methods are not visually
close to the ground-truth.

sults in Fig. 13 and Fig. 14 show that, our method can generate
skeleton-based LBS models with better overall approximations than
the three previous methods [Schaefer and Yuksel 2007; de Aguiar
et al. 2008a; Hasler et al. 2010], since our iterative rigging algo-
rithm can effectively optimize the objective function in Eq. (3a).
Notice that our method can even approximate the cow deformation
reasonably well (Fig. 14), although a more suitable skinning model
for this dataset is still the LBS model without skeletal structure [Le
and Deng 2012]. Moreover, due to the limited approximation power
of the LBS model, our current method cannot capture certain com-
plicated non-linear deformations (one example is shown in Fig. 15).

9 Conclusions

We present a robust and accurate approach to automatically gener-
ate a skeleton-based LBS rigging model. Given a set of example
poses, our approach can generate its skeletal structure, joint posi-
tions, skinning weights, and bone transformations corresponding to
the example poses. The output of our method (i.e., skeleton-based
LBS) can be straightforwardly incorporated into current animation
pipeline in game engines and popular 3D modeling/animation soft-
ware such as Autodesk Maya. As demonstrated in our experimental

Figure 15: Our approach fails to remove 4 redundant bones in the
upper arms and upper legs of the scape model, since the LBS model
need them for a better approximation of muscle bulging on these
parts (indicated by red arrows). To the end, our approach keeps
the 4 bones to capture the non-linear deformation effect. The gray
models are the ground-truth.

results, even only using a single set of parameters, our approach can
generate high-quality skeletons and soundly outperform three state-
of-the-art methods for all the test datasets in terms of robustness and
accuracy.

Despite the achieved accuracy and robustness, our current approach
has several limitations including the aforementioned low computa-
tional efficiency, example data dependency, and limited approxi-
mation power of the LBS model. We believe some potential solu-
tions to tackle these issues would be to utilize skeleton templates,
introduce certain user interventions, or design more sophisticated
skinning models.
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