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Figure 1: Our compression model blends master bone transformations and caches them as virtual bone transformations (left most). It can
compress Linear Blend Skinning (LBS) model with dense weights and generate a fast and compact model without sacrificing the quality of
skinning, compared with dense-weight LBS model.

Abstract

Weighted linear interpolation has been widely used in many skin-
ning techniques including linear blend skinning, dual quaternion
blend skinning, and cage based deformation. To speed up perfor-
mance, these skinning models typically employ a sparseness con-
straint, in which each 3D model vertex has a small fixed number
of non-zero weights. However, the sparseness constraint also im-
poses certain limitations to skinning models and their various ap-
plications. This paper introduces an efficient two-layer sparse com-
pression technique to substantially reduce the computational cost
of a dense-weight skinning model, with insignificant loss of its vi-
sual quality. It can directly work on dense skinning weights or use
example-based skinning decomposition to further improve its accu-
racy. Experiments and comparisons demonstrate that the introduced
sparse compression model can significantly outperform state of the
art weight reduction algorithms, as well as skinning decomposition
algorithms with a sparseness constraint.
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1 Introduction

Blend skinning (i.e., smoothly interpolating deformation along the
surface of 3D models) is probably the most widely employed skin-
ning technique to date due to its simplicity, efficiency and flexi-
bility. The blend skinning idea has been used in most popular
skinning approaches including skeleton based skinning with lin-
ear blending [Merry et al. 2006], dual-quaternion blending [Kavan
et al. 2008], cage based skinning with mean value coordinates [Ju
et al. 2005], harmonic coordinates [Joshi et al. 2007], and com-
bination model with bounded biharmonic weights [Jacobson and
Sorkine 2011]. Blend skinning is typically linear; it is controlled
by a weight matrix, where each element defines the contribution of
a bone (in skeleton based skinning) or a control point (in cage-based
skinning) to interpolation of a mesh vertex. To speed up skinning
performance, a sparseness constraint is often imposed on the weight
matrix, that is, the weight matrix contains only a small proportion
of non-zero elements. In practice, for the sake of effective parallel
implementation on GPUs or multi-core CPUs, a more strict sparse-
ness constraint is typically imposed on the weight matrix, which
requires every vertex to be associated with no more than k bones
or control points. On the one hand, the sparseness constraint has
the advantages of saving computation and balancing workload be-
tween different processing cores. On the other hand, this setup has
the following intrinsic limitations.

Limitation #1: It is difficult to handle exceptional vertices that
are naturally associated with more than k bones or control points.
The exceptional vertices typically appear on smooth and highly de-
formable regions of 3D models. As a specific example shown in
Fig. 2(b), more than 23 percent of the vertices in a cheb model
(illustrated in red), rigged by [Baran and Popović 2007] with 17
bones, are influenced by all the bones. Also, exceptional vertices
might be required by design; as an example, vertices on the palm re-
gion of a hand model (Fig. 2(c)) are influenced by several proximal
phalanges and all five metacarpal bones. Indeed, due to existence
of such exceptional vertices, a difficult trade-off often needs to be
delicately handled in sparse-weight skinning models.

Limitation #2: Conventional weighted blending is inefficient from
a computational perspective, despite the fact that performance has
always been one of most important concerns for skinning models
[Kavan et al. 2010]. Specifically, the weights of two neighboring

http://doi.acm.org/10.1145/2461912.2461949
http://portal.acm.org/ft_gateway.cfm?id=2461949&type=pdf
http://graphics.cs.uh.edu/ble/papers/2013s-dwc/
http://www.youtube.com/watch?v=9__31MKlcpE


Figure 2: (a): Our skinning compression model can achieve a high
performance with insignificant loss of visual quality. (b) and (c):
Examples of exceptional vertices (illustrated in red color): a cheb
model (b) is rigged by [Baran and Popović 2007], and a hand model
(c) is rigged manually.

vertices are typically similar if skinning is smooth. These similar
linear combinations are calculated multiple times; if they can be
properly cached (or compressed), overall computational cost can
be measurably reduced.

Limitation #3: Imposing a sparseness constraint makes a skinning
problem a selection of discrete variables that does not have any
yet known optimal polynomial solutions [Zou and Hastie 2005].
Putting it together with convex (non-negativity and affinity) con-
straints on weights would make the skinning problem even more
challenging. Any non-optimal solution might lead to a non-smooth
skinning model or even a bad approximation [Landreneau and
Schaefer 2010]. Solutions to many skinning applications can be
significantly simplified if a sparseness constraint does not need to
be handled.

In this paper, we present a lossy weight matrix compression ap-
proach to free skinning models from the sparseness constraint and
thus overcome the above limitations (Fig. 2(a)). Based on the
weight compression, we construct an effective two-layer blend
skinning model to reduce computation of linear blend skinning
(LBS) with dense weights (Fig. 3). Specifically, its master bone
blending layer blends the transformations of the original control
bones (called master bones) and caches the results as virtual bone
transformations. Then, its virtual bone blending layer blends the
virtual bone transformations in a similar way to produce vertex
transformations. In the virtual bone blending layer, each vertex
transformation is blended by no more than two virtual bones.

Contributions. The main contributions of this work are:

• We introduce a two-layer blend skinning model to effectively
compress weights of the widely used LBS model with in-
significant loss of accuracy (§3.1). Our model is friendly to
parallel implementation on multi-core processors.

• Besides formulating compression of skinning weights as a
sparse dictionary learning problem (§3.2 to §3.4), our model
also provides flexible control to users by setting either an error
threshold or a desired skinning performance. It can directly
work on an input bone-vertex weight map or utilize example
poses to achieve a better accuracy (§3.5).

Compared with existing weight reduction techniques [James and
Twigg 2005; Landreneau and Schaefer 2010], our model allows
more flexible control on the trade-off between accuracy (skinning
error) and performance (a desired number of blending operations).
Through our experiments and direct comparisons, we show that
our model achieves substantially smaller approximation errors than
state of the art weight reduction techniques, given the same total
number of bones (§4). We also analyze the performance and mem-
ory overhead of our approach on graphics hardware and its potential
applications for other skinning models (§5).

Figure 3: A conventional blend skinning model (top left) with a
dense weight matrix W (bottom left) is approximated as a two-
layer blending with virtual bones (top right). This is equivalent
to factorizing W into a sparse dictionary D and a matrix of sparse
coefficients A (bottom right). D has at most c non-zero elements,
while A has at most 2 non-zero elements. See §3.1 for details.

2 Related Work

Blend Skinning. A straightforward idea of skinning a 3D model
with smooth surface deformation is to blend a set of sparse defor-
mation controls along its surface. The blending is typically a linear
interpolation controlled by skinning weights. To date, two popular
skinning approaches have been developed: skeleton based skinning
and cage based skinning.

In skeleton based skinning, deformation of a 3D model is controlled
by manipulating the transformations of a set of bones [Merry et al.
2006]. Through skinning weight based blending, the transforma-
tions are propagated to all the vertices of the model. The most pop-
ular way to blend bones is to linearly blend transformation matrices
[Kavan et al. 2010; Hasler et al. 2010; Jacobson et al. 2012a]. Or-
thogonal bone transformations can be non-linearly transformed to a
dual-quaternion form before dual-quaternion linear blending is ap-
plied [Kavan et al. 2007; Kavan et al. 2008]. Skinning weights are
typically represented as a matrix form. A weight matrix can be con-
structed manually through weight painting, automatically extracted
from static 3D models [Baran and Popović 2007; Jacobson et al.
2012b; Kavan and Sorkine 2012; Borosán et al. 2012], or created
by skinning example poses [Wang and Phillips 2002; Mohr and
Gleicher 2003; James and Twigg 2005; Schaefer and Yuksel 2007;
Le and Deng 2012].

Cage based skinning [Ju et al. 2005] can be conceptually regarded
as an extension of the well-known free form deformation method
[Sederberg and Parry 1986], where a 3D model is embedded into
a low resolution cage; thus, each vertex of the model can be repre-
sented relative to the vertices of the cage. By controlling positions
of the cage vertices, the shape of the 3D model is deformed in ac-
cordance to the cage. Specifically, vertex coordinates of the 3D
model are computed as weighted linear combinations of the cage
vertices. Weights of the linear combinations can be computed by
various methods, including barycentric coordinates [Warren et al.
2004], mean value coordinates [Ju et al. 2005], and harmonic coor-
dinates [Joshi et al. 2007]. Recently, Jacobson et al. [2011] intro-
duced bounded biharmonic weights to combine skeleton based and
cage based into one skinning model.

Skinning Weight Reduction. One major issue of the above blend
skinning methods is their scalability with respect to high resolution
models. When a model has a large number of vertices, blending
of many control parameters per vertex is very costly. Generally,
this problem is handled by constraining the number of non-zero
weights per vertex. In most cases, this threshold number is set to
4 for the sake of an efficient implementation on GPU vertex shader
[Nguyen 2007]. This constraint can be simply enforced by select-



ing the four largest weights by consulting example poses [James
and Twigg 2005; Schaefer and Yuksel 2007; Le and Deng 2012] or
considering mesh fairness [Landreneau and Schaefer 2010].

Although these weight reduction methods help efficient skinning
implementation, they have a common drawback as mentioned in
§1, that is, they may significantly affect certain exceptional vertices
that are naturally associated with more than 4 bones. This problem
can be alleviated, to a certain extent, by employing `1-norm min-
imization for the sparseness constraint [Hasler et al. 2010], which
helps to adapt the number of non-zero weights in accordance to the
approximation power required for each vertex. However, output of
different numbers of non-zero weights per vertex is unfriendly in
terms of parallel implementation; thus, this will significantly de-
grade skinning performance.

Virtual Bones for Skinning. With a sparseness constraint enforced
on the LBS model, skinning quality on certain parts of a 3D model
can be enhanced by adding virtual (auxiliary) bones [Mohr and Gle-
icher 2003], where their transformations precisely fit the vertices on
those parts of the 3D model. Virtual bone transformations give ad-
ditional degrees of freedom to skinning models. However, there is
no clear way to model the relation between virtual bone transforma-
tions and master bone transformations. Due to the requirement of
additional input parameters, adding virtual bones has certain draw-
backs, e.g., increasing the complexity of animation control and in-
creasing data transfer between CPU and GPU.

Virtual bones are also used to approximate non-linear skinning
models. Kavan and colleagues [2009] model the relation between
virtual bone transformations and master bone transformations us-
ing a dual-quaternion blending technique. Also, their virtual bones
require extra computational cost for data conversion between trans-
formations and dual quaternions. Nevertheless, their work assumes
the original skinning model is already sparse, and it actually in-
creases the number of blending operations. Thus, the performance
of their model [Kavan et al. 2009] is bounded by the sparse LBS
model.

3 Compression of Blend Skinning Models

3.1 Problem Formulation

Let W ∈ Rk×n be the weight matrix of an input skinning model
with n vertices and k bones, as illustrated at the top left of Fig. 3.
We denote the i-th column of W (or the original weights of the i-
th vertex) as wi. We compress this original skinning model using
a two-layer blending scheme with virtual bones (the top right of
Fig. 3). At the first layer, a.k.a. master bone blending, we calculate
and cache the transformations of m virtual bones by blending the
transformations of k original bones (called master bones). At the
second layer, a.k.a. virtual bone blending, we calculate the position
of each vertex by blending the transformations of the virtual bones
and applying the resultant transformation to the vertex. We also
impose a sparseness constraint on each blending layer to make the
model friendly to parallel implementation on graphics hardware.
Specifically, at the master bone blending layer, we allow at most c
blending operations for each virtual bone; at the virtual bone blend-
ing layer, we allow at most 2 blending operations for each vertex.

Letting dj ∈ Rk be the blending weights of the j-th virtual
bone, we can represent all the master bone blending weights as
a sparse matrix D = [d1, . . . , dm] ∈ Rk×m. Similarly, letting
αi ∈ Rm be the blending weights of the i-th vertex, we can repre-
sent all the virtual bone blending weights as another sparse matrix
A = [α1, . . . , αn] ∈ Rm×n, where each column αi has at most
two non-zero elements. With the above matrix representations, the

blend skinning compression problem can be viewed as a sparse cod-
ing problem in which the original matrix W needs to be factorized
intoD (i.e., dictionary) andA (i.e., coefficients), as illustrated at the
bottom of Fig. 3. Each column dj is called an atom of the dictio-
nary. This sparse coding problem is then formulated as minimizing
the following quadratic error function:

min
D,A

∆W
2 = min

D,A

1

kn
‖DA−W‖2F (1a)

Subject to: card(αi) ≤ 2, ∀i (1b)
card(di) ≤ c, ∀i (1c)

Parameter selection. We denote card(x) as the cardinality (num-
ber) of non-zero elements in vector x. The constraint in Eq. (1b)
enforces that at most two virtual bones can influence any particular
vertex. This number (two) is empirically chosen for best perfor-
mance. Since the number of vertices is typically large, minimizing
the number of blending operations at the virtual bone blending layer
would be the most effective way to reduce computational cost. In
Eq. (1c), we also constrain the sparseness of D to reduce computa-
tional cost and thus improve performance. In order to maintain the
approximation power of this model, we need to keep the sparseness
of dictionary atoms to be no less than that of the original weights
or vertices. However, we empirically found that slightly increasing
the sparseness of atoms could expand its approximation power. For
this reason, we choose c = maxi=1...n card(wi) + 1 in our ex-
periments. Note that users can perform fine tuning on c to further
optimize performance with different input data.

Figure 4: Some example poses of an animated mesh sequence (left)
and its corresponding compressed blend skinning model (right).
Master bone transformations are illustrated in red, and virtual bone
transformations are illustrated in blue. We place each virtual bone
at a vertex with the largest sparse coefficient. Our model distributes
virtual bones adaptively so that more virtual bones are employed
for highly deformed regions (e.g., the legs or the tail).

Approximation power and effectiveness of our model. Com-
pared with directly imposing a sparseness constraint on skinning
weights, our two-layer sparse blending model essentially expands
the linear blending space from c-1 bone blending operations per
vertex to 2c bone blending operations per vertex. Furthermore, vir-
tual bones in our model can cache similar blending of master bones
and save significant computational cost. The virtual bones can also
be adaptively distributed in accordance with deformation complex-
ity, e.g., the vertices on highly deformed regions could employ more
virtual bones than those on other regions, as illustrated in Fig. 4.

In terms of parallel implementation, our compression model is
friendly to stream processing architectures, such as GPUs, since
blending operations for each node (virtual bone or vertex) are in-
dependent of each other, and they have the same workload (i.e.,



the same number of blending operations per node). Thus, the two
blending layers in our model can be effectively implemented on
GPUs as a process of two passes.

3.2 Algorithm Overview

The overview of our sparse weight matrix factorization for com-
pressing blend skinning models is presented in Algorithm 1. Users
can terminate this algorithm two different ways: specifying a max-
imum number of virtual bones (or dictionary size) Σ, or specifying
an error threshold ε. In the former case, we can control the com-
putational cost of the compressed model (i.e., number of blending
operations). In the latter case, we can control the accuracy of the
compressed model (i.e., the approximation error, ∆W ).

Algorithm 1 Sparse Weight Matrix Factorization

Input: a weight matrix W = [w1, . . . , wn] ∈ Rk×n, an error
threshold ε OR a maximum number of virtual bones Σ.

Output: D = [d1, . . . , dm] ∈ Rk×m and
A = [α1, . . . , αn] ∈ Rm×n s.t. Eq. (1)

1: Initialize a dictionary with m = 2 atoms: D = {d1, d2}
2: Initialize coefficients A according to D
3: repeat
4: for t = 1→ κ(∆W ,m) do
5: Find vertex p with the largest approximation error
6: Add wp to the dictionary
7: Update coefficients A from vertex p
8: end for
9: repeat

10: Update dictionary D
11: for i = 1→ n do
12: Update coefficients A from vertex i
13: end for
14: until Convergence
15: until ∆W < ε OR m = Σ
16: return D and A

The algorithm 1 can be briefly summarized as follows: First, we
initialize a minimum dictionary with 2 atoms and its corresponding
coefficients (line 1 and line 2). Then we sequentially add atoms to
the dictionary (line 4 to line 8) along with jointly optimizing the
dictionary and coefficients (line 9 to line 14) until error ∆W < ε or
the size of the dictionary m = Σ.

Initialization. We initialize the first atom of the dictionary
using the weights of a vertex with the largest `2-norm (i.e.
d1 = arg maxwi ‖wi‖2). The second atom is initialized as the
weights of another vertex with the smallest dot product to d1

(i.e., d2 = arg minwi {wi · d1}). The coefficients A can be
solved per-vertex (column by column) by linear least squares with
two unknowns (corresponding to two atoms) as follows: αi =
arg minx ‖Dx− wi‖22.

Adding atoms. In order to minimize ∆W , we always add the
weights of a vertex p that has the largest error to the dictionary
as follows (line 5):

D ← [D,wp] s.t. p = arg max
i
‖Dαi − wi‖22 (2)

Instead of adding atoms to the dictionary one by one, followed by
a joint dictionary-coefficients optimization, we can improve perfor-
mance by adding κ(∆W ,m) atoms (line 4) before each joint opti-
mization. κ(∆W ,m) is computed based on the current approxima-
tion error ∆W (D,A) (refer to Eq. (1a)) and the current dictionary

size m (Eq. (3)). Note that when adding each atom without dictio-
nary optimization, we still need to update coefficients according to
the added atom (line 7).

κ(∆W ,m) = min{
„

∆W

ε
− 1

«
m+ 1,Σ−m} (3)

Dictionary-coefficients optimization. We solve the joint
dictionary-coefficients optimization problem by a block coordinate
descent approach with warm restarts [Nocedal and Wright 2000],
that is, alternatively updating the dictionary (line 10) and coeffi-
cients (line 11 to line 13). With the warm restarts, we found that its
alternative update process can converge within a small number of
iterations. In our experiments, we found that it typically converged
within 3 iterations.

In the following sections, we describe details of two major steps
in the algorithm 1, i.e., dictionary update (§3.3) and coefficients
update (§3.4). Note that two coefficients update steps (line 7 and
line 12) use the same procedure. To speed up performance, we only
perform updates on a subset of vertices with potential coefficient
changes. This is implemented as an ordered update process that
starts from one vertex, i.e., vertex p in line 7 and vertex i at line 12.

3.3 Dictionary Update

At the dictionary update step, we employ an online dictionary up-
date algorithm with warm restarts [Mairal et al. 2010], since it is
simpler and faster than other methods (e.g., K-SVD [Aharon et al.
2006] or Newton’s method [Lee et al. 2007]). Since our dataset is
relatively small, we can use it at each update rather than sampling
it. Specifically, we precompute Φ and Γ as follows:

Φ =

nX
i=1

αiαi
T = [φ1, . . . , φm] ∈ Rm×m (4a)

Γ =

nX
i=1

wiαi
T = [γ1, . . . , γm] ∈ Rk×m (4b)

Since αi is sparse, the complexity of computing Φ and Γ is O(n).
Then we update each atom (column) dj of the dictionary as follows:

dj ←
1

Aj,j
(γj −Dφj) + dj (5)

After each atom update, we enforce the sparseness constraint in Eq.
(1c) by keeping the c largest elements of vector dj , while setting the
others to be 0. Finally, we normalize the result so that dj satisfies
the affinity constraint (i.e., the sum of all the elements equals to 1)
by keeping it within the effective range of a floating point number
on the machine. Although other normalization methods such as
dividing dj by the maximum element would work in theory, we
found that dividing dj by the sum of all the elements (normalization
with the affinity constraint) can improve the rate of convergence
since the weights {wi} are also constrained to be affinity.

3.4 Coefficients Update

The challenge of coefficients update for each vertex is to find two
optimum dictionary atoms (i.e., virtual bones) that contribute to the
vertex most. If the two optimum atoms are determined, the coef-
ficients update becomes a trivial least squares problem with two
unknowns. Although the two optimum atoms can be determined



by a greedy algorithm such as matching pursuit [Mallat and Zhang
1993], it requires O(m) operations per vertex, or O(mn) opera-
tions for updating all the coefficients. To this end, we propose a fast
coefficients update method that requires approximatelyO(n) oper-
ations by assuming skinning weights are typically smooth across
neighboring vertices (the fairness assumption on the manifold).

i 
j 

Shared optimum 
virtual bone 

Figure 5: On a manifold, two neighboring vertices typically have
similar skinning weights and coefficients; thus, they most likely
share the same optimum virtual bones (dictionary atoms). This as-
sumption can be used to accelerate the update of coefficients.

With this assumption, two neighboring vertices on a mesh would
have similar skinning weights and coefficients. Furthermore, the
two vertices might share the same optimum virtual bones, as illus-
trated in Fig. 5. If the two optimum atoms for vertex i are updated,
we expect the two atoms might be the optimal ones for its neighbor-
ing vertices. Thus, we can perform the update as a preorder graph
traversal, that is, we start coefficient updating at a vertex with two
known optimum dictionary atoms and use these atoms as candi-
dates to update the coefficients of its neighboring vertices; then we
repeat the same process for these neighboring vertices. Specifically,
we implement the coefficients update recursively as a depth-first
search on a mesh edge-based graph (Algorithm 2).

Algorithm 2 CoefficientsUpdate(vertex i, candidate atoms dr , ds)
Input: vertex i, candidate atoms dr , ds

1: if the linear combination of dr and ds improves error Ei then
2: Update αi and Ei by linear least squares
3: for all j ∈ N (i) do
4: Find {r′, s′} ⊂ {r, s, ρj , σj} s.t. the linear combination

of dr′ and ds′ best approximates wj
5: CoefficientsUpdate(j, dr′ , ds′ )
6: end for
7: end if

In Algorithm 2, assuming vertex i has two candidate atoms with
indices r and s, we update coefficients αi and corresponding ap-
proximation error Ei (line 2) if and only if the linear combina-
tion of the two candidate atoms dr and ds can improve Ei (line
1). Here we define the approximation error Ei of weight wi as
Ei

2 = ‖Dαi − wi‖22. Since the two candidate atoms are known,
we solve the optimum αi by least squares with two unknowns, i.e.,
(αi)r and (αi)s. If wi is constrained to be affinity, we also im-
pose the affinity constraint to αi to improve the rate of convergence.
Specifically, we solve:

min
(αi)r
(αi)s

‖dr(αi)r + ds(αi)s − wi‖22 s.t. (αi)r + (αi)s = 1 (6)

Once candidate atoms dr and ds are used to update coefficients αi
of vertex i, we then recursively update coefficients of its neighbor-
ing vertices N (i) (line 3 to line 6). Let j be a vertex in N (i), we
first find candidate atoms r′ and s′ of j so that the linear combina-
tion of dr′ and ds′ best approximates wj (line 4). We only select r′

and s′ within the set of current optimum atoms of vertex j and the

candidate atoms of vertex i. Specifically, let ρj and σj be indices of
current optimum atoms of vertex j, i.e. (αj)ρj and (αj)σj are non-
zero coefficients, we only select r′ and s′ in the set of {r, s, ρj , σj}.
In the end, we consider six combinations of two atom indices and
solve linear least squares for each of them, similar to Eq. (6), to
find the best combination.

Employing coefficients update in the main algorithm. We em-
ploy the above recursive algorithm 2 in the main algorithm 1 for two
purposes. First, after weights wp are added to the dictionary (line 6
in Algorithm 1), the new dictionary atom wp is the optimum atom
for vertex p. We start a recursive coefficients update from vertex p
(line 7) with the latest added dictionary atom wp. The other candi-
date atom can be selected arbitrarily. Compared to a conventional
solution of updating coefficients for all the vertices, our algorithm
can save a significant amount of unnecessary update cost for ver-
tices far away from p on the mesh that are not potentially affected
by the latest added atom (virtual bone).

Second, in full coefficients update step, we start the recursive coef-
ficients update one by one from every vertex (line 12 in Algorithm
1). For each vertex i, we keep its current optimum atoms and use
them as candidate atoms. In other words, candidate atoms dr and
ds for vertex iwill be the atoms such that (αi)r 6= 0 and (αi)s 6= 0.
If the least squares solution using these candidate atoms improves
the approximation error, the update will be propagated through its
neighboring vertices on the mesh. In general, this recursive up-
date process might visit each vertex several times, which makes
the amortized complexity of the full coefficient update step O(n)
in practice. We will further analyze performance of our algorithm
through experiments in §4.

3.5 Factorization from Example Poses

Our model can also utilize example poses for a better approxima-
tion. Although we can potentially extend our weight factorization
algorithm for various skinning models such as cage based defor-
mation [Ju et al. 2005] or dual-quaternion blending [Kavan et al.
2008], without loss of generality, in this work we only demonstrate
our model for the most popular LBS approach.

In order to utilize the example poses, we need to find a compres-
sion model that best approximates given example poses instead of a
compression model that best approximates skinning weights. Sim-
ilar to previous works [James and Twigg 2005; Kavan et al. 2010;
Le and Deng 2012], we also minimize a quadratic error function on
all the example poses given corresponding bone transformations.
Fortunately, we can still adapt our sparse weight matrix factoriza-
tion (Algorithm 1) by replacing the approximation error on skinning
weights with the approximation error on example poses.

Assume we have f example poses. Let vti ∈ R3 be the position of
vertex i in example pose t, and ui ∈ R3 be the rest pose position of
vertex i. For each example pose t, we represent its bone transforma-
tions as matrices, and use T tj ∈ R3×4 to denote the transformation
of bone j relative to its position at the rest pose. Given the example
poses and bone transformations, we can solve the optimized LBS
weights W ∗ = [w∗1 , . . . , w

∗
n] ∈ Rk×n using linear least squares

with equality constraint (
Pk
j=1 (w∗i )j = 1) and inequality con-

straint (w∗i ≥ 0) [Le and Deng 2012]. Note that the optimized
weights W ∗ are not constrained to be sparse. We utilize example
poses by modifying certain steps in Algorithm 1 as follows.

Approximation error. We replace the approximation error on
weight matrix ∆W

2 (Eq. (1)) with the approximation error on ex-
ample poses ∆E

2 (Eq. (7a)). The approximation error for each
vertex Ei2 (Eq. (7b)) is used to find new atoms for the dictionary
(line 5 in Algorithm 1). Here, we normalize the approximation error



by subtracting the lower bound E∗i
2 (i.e., the approximation error

with the optimized LBS weights w∗i , refer to Eq. (7c)) from it.

∆E
2 =

1

3fn

nX
i=1

Ei
2 (7a)

Where: Ei2 =

fX
t=1

‚‚‚‚‚
kX
j=1

(Dαi)jT
t
j

»
uti
1

–
− vi

‚‚‚‚‚
2

2

− E∗i
2 (7b)

E∗i
2

=

fX
t=1

‚‚‚‚‚
kX
j=1

(w∗i )jT
t
j

»
uti
1

–
− vi

‚‚‚‚‚
2

2

(7c)

Coefficients update. We also use the approximation error Ei2 on
example poses (Eq. (7b)) to solve coefficients for the linear combi-
nation of atoms (line 1 and line 4 in Algorithm 2).

Dictionary update. We use the optimized weights W ∗ to pre-
compute matrix Γ instead of W (refer to Eq. (4b)). Then we per-
form the same column update using Eq. (5). It should be noted
that this dictionary update neither gives the best error reduction nor
guarantees convergence in theory. However, this simple update is
faster and more effective than other complicated methods, e.g., em-
ploying divergence protections such as Shift-cutting [Nocedal and
Wright 2000] or Marquardt parameter [Marquardt 1963].

4 Results

To evaluate our approach, we first performed skinning decomposi-
tion on a number of animated mesh sequences provided by [Sum-
ner and Popović 2004; Vlasic et al. 2008] (reported in Table 1)
to extract their optimized linear blend skinning models. For fair
comparisons between different sequences, we first rescaled all the
datasets so that their rest poses are tightly fit in a unit sphere. Then,
for each sequence, we implemented the smooth skinning decom-
position algorithm [Le and Deng 2012] to extract its flexible bone
transformations and convex weight map.

Name n f
samba 9971 175
camel-gallop 21887 48
elephant-gallop 42321 48

Name n f
horse-gallop 8431 48
camel-collapse 21887 53
horse-collapse 8431 53

Table 1: The test datasets used in this work. n denotes the number
of vertices, and f denotes the number of example poses.

We also considered different levels of the sparseness constraint on
the weight map by setting different maximum numbers of bones per
vertex (namely, 4 bones per vertex, 8 bones per vertex, and dense
weights without the sparseness constraint). In our compressed skin-
ning model, we calculate the number of bones per vertex as the
average number of blending operations per vertex (including the
blending operations on both layers). Specifically, the number of
bones per vertex in our model is mc

n
+ 2. To compare the approx-

imation powers of different approaches on the example poses, we
use a fitting error measure E proposed by Kavan et al. [2010]. In
this section, we report all errors multiplied by 1000 for the sake of
convenience.

In Fig. 6, we show several example results of our skinning compres-
sion model with different thresholds of the objective function. We
can hardly observe visual distortions if the error threshold drops
below 0.001. If example poses are not utilized in our approach,

Figure 6: Example results of our skinning compression model with
different thresholds of the objective function (∆W and ∆E). We can
hardly observe visual distortions if the error threshold drops below
0.001. The input skinning model (camel gallop) has 15 bones with
a dense weight matrix. For each compression example, its bone
distribution is illustrated at the bottom-left corner. Master bone
transformations are illustrated in red; virtual bone transformations
are illustrated in blue. The fitting error on the example poses, E, is
also reported. “V. Bones” denotes virtual bones; “b/vtx” denotes
bones per vertex.

the value of the objective function ∆W represents the average er-
ror in original bone-vertex weights, since the original bone-vertex
weights satisfy the affinity constraint. ∆W can also represent the
relative distortion of the compressed model, compared to the orig-
inal blend skinning model. Otherwise, if example poses are used,
the value of the objective function ∆E represents the absolute dis-
tortion, compared to the original skinning model.

Since all the datasets are rescaled to tightly fit in a unit sphere,
the amounts of distortion caused by the both compression meth-
ods (with/without utilizing example poses) are highly similar if the
same error threshold is used. This relation is illustrated in Fig. 7. In
this figure, at each step we incrementally add 10 virtual bones to our
skinning compression approach and then perform joint dictionary-
coefficients optimization. For each step, the fitting errors on the
example poses are plotted along with the objective function.

Figure 7: Relation of the objective function and the fitting error on
the example poses. The input skinning model has 15 bones with a
dense weight matrix extracted from a camel gallop sequence. The
relation between value of the objective function and the fitting er-
ror is quite similar for the both cases (i.e., with/without utilizing
example poses). Compression utilizing the example poses produces
smaller fitting errors than that without utilizing the example poses.

Figs. 6 and 7 also illustrate that, to achieve the same approximation
accuracy, utilizing the example poses can produce a compressed
skinning model with a smaller number of virtual bones than with-



out utilizing the example poses. In addition, when the example
poses are provided, we have a more accurate way to control the fit-
ting error. Specifically, we can calculate the fitting error using the
following equation: E2 = ∆E

2 + E∗2, where E∗2 is the lower
bound of the fitting error (i.e., the fitting error with the optimized
LBS weights W ∗).

Comparison without utilizing example poses. In Table 2, we
compare the approximation errors on weight matrix (i.e., ∆W )
among our method, k-largest weight reduction, and smooth weight
reduction [Landreneau and Schaefer 2010]. We can see that, for
all the cases, our approach achieves substantially smaller approxi-
mation errors than the other two approaches. In this comparison,
all the three methods only perform reduction on the weight matrix
without utilizing example poses. We use two sets of input skin-
ning models generated by skinning decomposition [Le and Deng
2012]: skinning models with 8 bones per vertex and with dense
bone-vertex weights. Using the three different methods, the skin-
ning models with 8 bones per vertex are reduced to 4 bones per
vertex, and the skinning models with dense weights are reduced to
4 bones per vertex and 8 bones per vertex, respectively. Given a
reduced number of bones per vertex, kr , we calculate the number
of virtual bones (or the size of the dictionary) for our method as
Σ = (kr−2)n

c
. In the k-largest weight reduction method, we keep

only the kr largest weights per vertex and then normalize the sum
of these weights to be 1. In the smooth weight reduction method
[Landreneau and Schaefer 2010], at the normalization step, it also
takes mesh fairness into account by matching the Laplacian of re-
duced weights with that of the original weight map. Incorporating
smoothness to the reduction process would increase the approxima-
tion error on the weight matrix.

Name[k]
8 to 4 bones/vertex Dense to 4 bones/vertex Dense to 8 bones/vertex
k-Largest Smooth Ours k-Largest Smooth Ours k-Largest Smooth Ours

samba10 19.6 24.5 1.2 21.9 26.6 1.1 1.8 2.4 0.2
samba20 14 18 1.7 18.1 22.2 2.4 5 6.5 0.9
camel-gallop15 12.3 18.8 0.5 19.5 27.6 0.8 5 8.9 0.2
camel-gallop30 8.8 14 0.6 19.7 26.2 1.3 7.9 12.6 0.5
elephant-gallop15 16.4 24.5 0.5 30.3 42 0.8 8.1 12.1 0.3
elephant-gallop30 12.8 20.1 0.6 25.9 34.4 1.3 10 14.6 0.5
horse-gallop15 13 17.3 0.9 157.7 161.5 1.3 4.9 6.6 0.3
horse-gallop30 7.3 9.6 0.8 23.1 29.6 2.4 9.1 12.4 0.9
camel-collapse20 14.7 23.2 1.3 22 30.1 1.8 7.5 12.4 0.6
camel-collapse40 9.9 15.9 1.6 18.8 24.5 2.5 8.3 12.1 1.1
horse-collapse20 15.9 22.4 2.8 28.8 37 4 10.1 14.2 1.5
horse-collapse40 10.8 14.7 3.3 23.6 29.4 5.1 11 14.6 2.7

Table 2: Comparison of the approximation errors on weight matrix
(∆W ): k-largest weight reduction, smooth weight reduction [Lan-
dreneau and Schaefer 2010], and our method. In this comparison,
example poses are not used. The number of bones k is shown as a
subscript of input model name. The errors are multiplied by 1000
for convenience.

Comparison with utilizing example poses. If example poses are
used, we also compare our method with geometry weight reduction
[James and Twigg 2005], poisson weight reduction [Landreneau
and Schaefer 2010], and smooth skinning decomposition [Le and
Deng 2012]. From an original skinning model with k bones per
vertex, the geometry weight reduction method selects kr bones per
vertex with best approximation, normalizes the weights of the kr
bones, and then minimizes the fitting error on the example poses
using linear least squares. Similar to the smooth weight reduc-
tion [Landreneau and Schaefer 2010], the Poisson weight reduction
method takes mesh fairness into account by matching Laplacians
on the example poses.

Qualitative comparisons among the weight reduction methods are
presented in Fig. 8. All the methods reduce the skinning mod-
els with dense weights to 4 bones per vertex. From this figure,
we can see that the weight reduction methods utilizing the exam-
ple poses always give better approximations than the same meth-
ods without utilizing the example poses. In general, the results
by the smooth and Poisson weight reduction methods are smoother
and more pleasing than those by the k-largest and geometry weight
reduction methods. Meanwhile, without noticeable visual distor-
tions, our skinning compression method approximates the original
skinning models significantly better than the four weight reduction
methods (i.e., smooth, Poisson, k-largest, and geometry). In partic-
ular, when the example poses are utilized, our method, with only
4 bone-blending operations per vertex, can compress and approxi-
mate the original models as good as dense-weight skinning models.
This approximation is even better than the employed original skin-
ning decomposition approach [Le and Deng 2012] with 4 bones per
vertex, e.g. in the case of the elephant-gallop model.

In Table 3, we also quantitatively compare the fitting errors on ex-
ample poses among all the methods. The results show that our
model can substantially outperform the four chosen weight reduc-
tion methods. In most cases, our results are even better than the
employed original skinning decomposition approach [Le and Deng
2012] with the same number of bones. Note that this compari-
son gives certain bias to the employed skinning decomposition ap-
proach [Le and Deng 2012], since it is allowed to optimize bone
transformations and the rest pose to fit with the reduced weights.
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Figure 9: Running time (seconds) of our skinning compression ap-
proach on CPU. The first row shows running time of our compres-
sion without using example poses and the bottom row shows the
running time with using example poses. k denotes the number of
master bones, n denotes the number of vertices of the input 3D
model, and f is the frame number of example poses.

Performance. We also illustrate the running time of our approach
for some test cases in Fig. 9. We implemented our approach in
C++ and ran all the experiments on an off-the-shelf computer with
a single 2.0 GHz CPU core. As illustrated in this figure, when the
example poses are utilized, our approach will need more than an
order of magnitude running time than the case without utilizing ex-
ample poses. For the same number of master bones, we observe the
running time of our compression increases linearly with respect to
the size of the input data. Approximately, the running time without
example poses increases linearly with respect to the number of ver-
tices n, and the running time with the example poses increases lin-
early with respect to the size of all the example poses (i.e., n× f ).
This observation shows that our algorithm, especially the coeffi-
cients update (§3.4), has approximately a linear complexity in prac-
tice.



Figure 8: Comparisons between our method and several selected skinning weight reduction methods (i.e., k-largest weight reduction, smooth
weight reduction [Landreneau and Schaefer 2010], geometry weight reduction [James and Twigg 2005], and Poisson weight reduction
[Landreneau and Schaefer 2010]). The three used models are elephant-gallop with 15 bones (top-left), horse-collapse with 20 bones (top-
right), and samba with 10 bones (bottom). All the methods reduce the skinning models with dense weights (obtained via the smooth skinning
decomposition method [Le and Deng 2012]) to 4 bones per vertex. The methods noted with blue do not utilize example poses, while the
methods noted with red utilize example poses. In addition, “4 bones/vtx skinning decomposition” denotes the skinning model with 4 bones
per vertex that is directly computed by the smooth skinning decomposition approach [Le and Deng 2012].

5 Discussion

Besides the LBS model (as demonstrated above), our two-layer
blend skinning compression approach can also be potentially ex-
tended to handle and compress other skinning models. For in-
stance, we could reduce non-linear skinning models with dense
weights such as dual-quaternion blend skinning [Kavan et al. 2008]
by replacing the linear coefficients update in §3.4 with a non-
linear least squares solver (e.g., the Levenberg-Marquardt algo-
rithm [Marquardt 1963]). Our compression method could also work
for cage-based deformation models by using an objective function
similar to the one used in [Landreneau and Schaefer 2010]. Note
that additional non-trivial analysis would be required to polish the
above thoughts.

Our current approach has certain limitations.

• First, our two-layer blending approach imposes some com-
putational overhead. In Fig. 10, we show GPU performance
comparison between our approach and the LBS model. Our
two-layer model performs much faster than the LBS model
with dense weights. Our model and the LBS with sparse
weights have similar performance in some scenarios that re-
quire intensive computation, i.e., models with 8 bones per ver-
tex or models with a high resolution (e.g., the camel model
(21887 vertices) and the elephant model (42321 vertices)). In
other scenarios that require light computation, our model per-
forms slower due to extra I/O operations on the buffers and
cost for synchronization between two passes on GPUs. Fortu-
nately, since the overhead is insignificant for complex models,

Figure 10: GPU Performance comparison between LBS and our
approach. Both methods were implemented with Microsoft Di-
rect3D 11 running on NVIDIA Geforce GT 540M. Normal vectors
were transformed and then normalized to unit length. The per-
formance was measured by animating 150 instances and reporting
FPS for the entire pipeline including rendering.

our approach is suitable well for skinning applications that re-
quire both high performance and visual quality.

• Second, our model requires additional storage space for
caching virtual bone transformations. Fig. 11 visualizes the
memory overhead required by our approach, compared with
linear blend skinning with the same number of bones per ver-



Name[k]
8 to 4 bones/vertex Dense to 4 bones/vertex 4 b/v Dense to 8 bones/vertex 8 b/v Dense

k-Largest Smooth Ours w/o Ex Geometry Poisson Ours w/ Ex k-Largest Smooth Ours w/o Ex Geometry Poisson Ours w/ Ex SD k-Largest Smooth Ours w/o Ex Geometry Poisson Ours w/ Ex SD SD
samba10 10.6 11.5 5 9.4 10.5 4.8 11.8 12.7 4.8 10.5 11.6 4.7 5.7 5.1 5.3 4.8 4.8 5 4.8 4.9 4.8
samba20 5.7 6.5 2.3 5 5.8 2.1 7.6 8.3 2.4 6.8 7.6 2 2.7 3.8 4.4 2 3.1 3.7 1.9 2.2 1.9
camel-gallop15 8.3 9.7 1.6 6 8 1.4 13.1 14.9 1.5 9.5 11.9 1.3 2.3 5 6.5 1.3 3.2 4.2 1.3 1.6 1.3
camel-gallop30 8.1 9.4 1 4.9 7.6 0.8 13.8 15.5 2 8.3 10.6 0.8 1.3 7.5 9.2 0.7 3.7 5.4 0.4 0.8 0.3
elephant-gallop15 11.5 13.8 2.1 9.1 12.4 1.9 18.7 21.2 1.8 13.7 16.9 1.6 3.2 9 10.9 1.7 5.2 7.1 1.6 2 1.6
elephant-gallop30 4.5 5.4 1 3.3 4.8 0.8 13 15.2 1.5 9.1 11.3 0.7 1.5 6.6 8.3 0.7 4.2 5.8 0.5 0.9 0.4
horse-gallop15 9.5 10.3 2.6 7 8.2 2.3 20.7 23.5 2.4 10.1 11.5 2 3.2 5.9 6.9 1.9 3.9 4.7 1.9 2.5 1.9
horse-gallop30 5.4 5.7 1.2 3.8 4.5 1 18.1 20.8 3.4 12.3 14.7 1.6 1.8 9.6 11.6 1.6 5.3 6.7 0.8 0.9 0.5
camel-collapse20 10.6 12.4 1.8 6.2 8.4 1.5 15.5 17.4 1.9 10.3 13.4 1.4 2.8 7.2 9.5 1.2 3.6 5.4 1.1 1.5 1.1
camel-collapse40 6.9 7.6 1.6 4 5.8 1.2 15.1 16.4 3.1 9.8 12.5 1.5 2.1 9.2 11 1.5 4.5 6.5 0.8 1.1 0.5
horse-collapse20 12 13.4 3 7.2 9 2.1 17.9 20.3 3.5 11 13.5 2.1 3.2 8.4 10.5 1.9 4.2 5.5 1.4 1.9 1.3
horse-collapse40 8.2 8.4 2.8 4.4 5.6 2 17.8 20 4.8 10.1 12.6 2.5 2.3 10.9 12.8 2.9 4.9 6.4 1.3 1.3 0.6

Table 3: Comparison of the fitting errors on example poses (E) among our skinning compression method and several selected weight
reduction methods: k-largest weight reduction, geometry weight reduction method [James and Twigg 2005], the smooth weight reduction
method [Landreneau and Schaefer 2010], and the Poisson weight reduction method [Landreneau and Schaefer 2010]. “SD” denotes the
employed original skinning decomposition method [Le and Deng 2012]. “b/v” denotes bones per vertex. “w/ Ex” (or “w/o Ex”) denotes
with (or without) utilizing example poses in our approach. The numbers in blue denote results without utilizing example poses, while the
numbers in red with underline denote results with utilizing example poses. The number of bones k is shown as the subscript of the input
model name. For the sake of convenience, all the errors in this table are multiplied by 1000.

Figure 11: The memory overhead required by our approach to
cache virtual bone transformations, compared with the linear blend
skinning model with the same number of bones per vertex. Here we
assume each vertex is stored as four 32-bit floating point numbers,
a transformation matrix is stored as sixteen floating point numbers,
and a blending weight with index is stored as two floating point
numbers.

tex. Note that the total memory required by our approach to
store blending weights is equal to the memory for storing the
linear blending skinning weights. The latter is proportional to
the number of vertices of a 3D model.

• Finally, transformation blending in our approach cannot
go beyond certain intrinsic limitations of the LBS model,
among which sophisticated deformation effects such as mus-
cle bulges or skin wrinkles cannot be captured well. Several
sound solutions have been proposed to alleviate this problem
including multi-weight blending [Wang and Phillips 2002]
and skinning correction [Lewis et al. 2000; Kry et al. 2002].

Within specific contexts, we can modify or extend our compression
model for better performance. For example, the number of virtual
bones per vertex in the virtual bone blending layer can be increased
for smoother skinning. However, this will measurably affect per-
formance, since the number of blending operations will increase
by n (the number of vertices) when the number of virtual bones
per vertex increases by one. In addition, we can also increase the
number of blending layers, which will increase the number of com-
binations of master bone blending operations at an exponential rate.
Nevertheless, increasing the number of layers would put additional

overhead on skinning models, especially with common multi-pass
implementation on GPUs. We believe that analyzing and extending
our compression model in these directions will be useful for certain
skinning applications.

6 Conclusions

We introduce a two-layer sparse compression approach to effec-
tively compress the weights of the widely used linear blend skin-
ning model. By employing virtual bones to cache transformation
blending of master bones, our approach can significantly reduce
computational cost, with insignificant loss of the accuracy of the
original skinning model. The virtual bones allow users to opti-
mally distribute and control the approximation errors on differ-
ent regions of 3D models, while keeping our compressed skinning
model friendly to parallel implementation on multi-core processors.

By formulating this weight compression problem as a sparse dictio-
nary learning problem, we design a fast and simple solution to take
advantage of the fairness property on the manifold. Our approach
can be flexibly controlled by setting either an error threshold or a
desired skinning performance (i.e., a maximum number of blending
operations). It can directly work on an input bone-vertex weight
map or utilize example poses to achieve a smaller approximation
error (i.e., a better accuracy).

Through many qualitative and quantitative comparisons between
our approach and selected state-of-the-art skinning weight reduc-
tion algorithms, we demonstrate the effectiveness and efficiency
of our skinning compression and reduction approach. Compared
with conventional linear blend skinning models with the same num-
ber of bones per vertex, our approach can approximate an input
model with a much smaller error. Finally, our approach can be po-
tentially extended to handle other skinning models including dual-
quaternion blend skinning and cage-based skinning.
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HASLER, N., THORMÄHLEN, T., ROSENHAHN, B., AND SEIDEL,
H.-P. 2010. Learning skeletons for shape and pose. In I3D’10,
23–30.

JACOBSON, A., AND SORKINE, O. 2011. Stretchable and
twistable bones for skeletal shape deformation. ACM Trans.
Graph. 30 (Dec.), 165:1–165:8.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
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