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Abstract

Most of current facial animation editing techniques are frame-based approaches (i.e., manually edit one keyframe

every several frames), which is ineffective, time-consuming, and prone to editing inconsistency. In this paper,

we present a novel facial editing style learning framework that is able to learn a constraint-based Gaussian

Process model from a small number of facial-editing pairs, and then it can be effectively applied to automate the

editing of the remaining facial animation frames or transfer editing styles between different animation sequences.

Comparing with the state of the art, multiresolution-based mesh sequence editing technique, our approach is more

flexible, powerful, and adaptive. Our approach can dramatically reduce the manual efforts required by most of

current facial animation editing approaches.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional

Graphics and Realism —- Animation; Artificial Intelligence [I.2.6]: Learning —- Analogies

1. Introduction

Providing users efficient and intuitive facial animation edit-

ing tools has been a long-standing challenging problem to

the computer animation community. Most of current facial

animation editing approaches [JTDP03, ZSCS04, BLB∗08,

FKY08] need users to sculpt a facial keyframe every sev-

eral frames. The users often need to repeat the similar pro-

cess for different animation sequences or models, which is

painstakingly time-consuming. Another common limitation

of these frame-based editing methods is that it is very diffi-

cult to ensure the consistency of editing styles across frames

or among different animation sequences. Therefore, it raises

two interesting questions: 1) Is it possible to learn the “edit-

ing style" from a small set of facial editing pairs or opera-

tions and then automatically transfer it to other frames of the

same sequence or other facial animation sequences? And 2)

how can we incorporate meaningful constraints to the above

facial animation editing-style learning process?

Motivated by the above questions, in this paper we present

a novel style learning and transferring framework for facial

animation editing. It is able to adaptively learn the editing

style from a small set of facial-editing pairs (i.e., selected

facial frames before/after the editing) and then automati-

cally apply it to other unedited frames or facial animation

sequences. Meanwhile, its algorithm can ensure the motion

smoothness, editing consistency, and the satisfaction of user-

specified facial constraints via a introduced Constraint-based

Gaussian Process (CGP) model and a multi-level facial con-

straint model. By comparing our approach with the state of

the art mesh sequence editing techniques, we show that our

approach is more flexible, powerful, and adaptive.

The main contribution of this work includes: (1) The in-

troduced Constraint-based Gaussian Process model (CGP)

can effectively learn the editing style from a small set of

facial editing pairs, and then it can be effectively applied

to automate the editing of the remaining facial animation

frames or transfer editing styles between different anima-

tion sequences. (2) The introduced multi-level facial con-

straint model provides users a flexible and powerful con-

trol mechanism. The combination of our context-dependent

CGP model and multi-level facial constraints is able to dra-

matically reduce the painstakingly manual efforts involved

in most of current facial animation editing practices, e.g.,

sculpting a facial keyframe every several frames.
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2. Related Work

Facial expression editing: Early data-driven facial expres-

sion editing work focused on segmenting the face into differ-

ent regions and then performing editing operations [JTDP03,

ZLGS03, ZSCS04, LD08]. Cao et al. [CFP03] employ In-

dependent Component Analysis (ICA) to decompose facial

motion signals into emotional and speech components, and

then perform various editing operations on different ICA

components. Recently, Sucontphunt et al. [SMND08] de-

veloped a 2D portrait-based facial expression posing inter-

face, and user-edited 2D portraits are automatically mapped

to the best matched 3D facial expressions in a dataset. Bickel

et al. [BLB∗08] presented a hybrid editing technique that

combines large-scale deformation with fine-scale facial de-

tails such as wrinkles. Feng et al. [FKY08] presented a data-

driven geometric deformation framework based on the ker-

nel Canonical Correlation Analysis algorithm (CCA). They

showed their approach can be effectively used for facial ex-

pression editing.

The above facial expression editing approaches are essen-

tially frame-based techniques, and thus animators have to

artistically ensure animation smoothness and style consis-

tency across sequences, which is often a daunting task even

for skilled animators. Different from these frame-based ap-

proaches, our approach employs a different paradigm: tak-

ing a small set of facial-editing pairs (selected facial frames

before/after the editing) as the training set and learning a

statistical model to encode the “editing style", and then, the

editing style model can be used to automate the editing of

other frames or sequences. Furthermore, our approach auto-

matically ensures style consistency across sequences.

Surface animation editing: Kircher and Garland [KG05,

KG06] apply time-varying multiresolution transformation

algorithms to modify arbitrarily deforming surface anima-

tions in a temporarily coherent manner. They further ex-

tend it to perform rotational editing for free-from mo-

tions [KG08]. Xu et al. [XZY∗07] proposed a keyframe-

based mesh sequence editing approach where selected

keyframes are adjusted to satisfy user-specified constraints

and then the deformation is propagated to the whole se-

quence. However, this approach requires users to manually

edit a substantial number of keyframes, and it is nontrivial

to construct proper local tangent planes required in their ap-

proach. Sumner et al. [SSP07] construct a deformation graph

to drive the deformation of a mesh sequence. However, their

approach does not directly address how to ensure the tempo-

ral coherence during its propagation procedure.

Constraint-based motion editing: Specifying con-

straints for character animation editing has been intensively

explored in the past decades (refer to the latest survey

by Gleicher [Gle01a]). Early work [WK88, Coh92] intro-

duced space-time constraints into character animation edit-

ing and control. In their approaches, physical laws are

employed to solve for the edited animations. Gleicher et

al. [Gle97, Gle01b] further extended space-time constraints

for character motion editing by maximally preserving crit-

ical, user-defined qualities of original motion signals. Lee

and Shin [LS99] proposed a hierarchical motion curve fit-

ting technique that adopts a multilevel B-spline representa-

tion with user-defined constraints to character animation.

In parallel to our work, recently Ikemoto et al. [LAF09]

propose a character motion editing approach that learns a

Gaussian Process model from a few given character motion

editing examples, with the assistance of a full-body inverse

kinematics system. Their approach shares certain similarities

with our work. However, from the methodology perspective,

our work extend the traditional Gaussian Process model that

is used in their work to a constraint-based Gaussian Process

framework, by introducing novel soft constraint-based opti-

mization and a multi-level facial constraint model. Further-

more, there are significant differences between facial and

character animation editing. For example, facial animation

does not have an explicit and standard control skeleton. Also,

it is often required to deal with the control of speech/emotion

in facial animation editing (in our work, we use a region-

based ICA scheme to deal with this issue), which is not the

case for character animation editing. Therefore, we argue the

above approaches cannot be directly used for facial anima-

tion editing without considerable efforts.

Motion style learning and transformation: Researchers

learn statistical models including Hidden Markov Models

(HMMs) [BH00], Scaled Gaussian Process Latent Variable

Model (SGPLVM) [GMHP04], and behavior-specific low-

dimensional spaces [SHP04] to model different styles of

human motions. Liu et al. [LHP05] learn a physics-based

character motion style from motion capture data using a

novel nonlinear inverse optimization algorithm. Recently,

Silva et al. [dSAP08] presented an interactive simulation

system for stylized human locomotion. In their approach, a

delicately designed controller is developed to reproduce the

style of any given reference motion. In addition, the bilinear

model [TF00] and the multilinear model have been success-

fully adapted for the transformation and transferring of facial

expressions [CDB02, VBPP05].

The distinction between the above motion style learning

approaches and our work is: these approaches typically fo-

cus on learning the style of existing animations, and its pur-

pose is either for synthesizing novel motions or for trans-

forming the style of existing motions; however, our work is

aimed to learn the style of how animators edit existing fa-

cial animations and thus reduce the tedious manual efforts

involved in current facial animation editing practices.

3. Our Approach

Fig. 1 illustrates the pipeline of our approach. It consists

of the following five main steps: (1) single/key frame edit-

ing: given an input facial animation sequence, users can se-
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Figure 1: The pipeline of our approach consists of the fol-

lowing five main steps: single/key frame editing, region-

based ICA, user-constraints specifying, editing style learn-

ing, and constraint-based optimization.

lect and edit an arbitrary number of frames via a picking-

and-dragging user interface, and these selected frames are

also called as “keyframes" in this paper, (2) region-based

Independent Component Analysis (ICA): we transform the

original facial motion to a region-based ICA representation

for effective model learning and intuitive user controls, (3)

user-constraints specifying: in this step, users are allowed to

impose various space-time constraints on the edited facial

animation, (4) editing-style learning: we learn the editing

style from existing facial-editing pairs (selected frames be-

fore/after the editing) using a novel constraint-based Gaus-

sian Processes model, and (5) soft constraint-based opti-

mization: Finally, other unedited frames of the animation

sequence or other animation sequences are automatically

“edited" by optimizing the trained Gaussian Process likeli-

hood function with user-specified constraints. The details of

the above steps will be described in follow-up sections.

3.1. Single Frame Editing

Without the loss of generality, the facial motion data for edit-

ing used in this work consist of 90 facial markers. Thus, for

any facial animation frame, users can select and drag any of

the 90 markers (handles) on a 3D facial mesh, and then the

deformation of the whole facial geometry is computed us-

ing the linear thin-shell model [BLB∗08]. In our approach,

users are required to manually edit a small number of arbi-

trarily selected frames, and these frames do not need to be

evenly distributed in the sequence. For each of the edited

facial frames, its before-editing and after-editing configura-

tions form an facial-editing pair. These facial-editing pairs

will be used as the training set for follow-up statistical model

learning.

3.2. Region-based Independent Component Analysis

Before we can learn a statistical model from the given facial-

editing pairs, we need to process the original facial motion

representation due to the following reasons. First, the raw fa-

cial motion (i.e., the concatenation of all the 90 facial mark-

ers) is high dimensional, and thus we need to reduce its di-

mensionality as the first step. Second, in order to provide

users high-level, intuitive user constraints/controls such as

retaining the speech content while exaggerating the expres-

sion, we need to transform the facial motion into a meaning-

ful, localized, and controllable representation. In this work,

we employ Principal Component Analysis (PCA) for dimen-

sion reduction and a follow-up region-based Independent

Component Analysis (ICA) to transform it to a suitable mo-

tion representation.

PCA has been widely used for data dimensionality reduc-

tion. However, in this work if PCA is directly applied to the

facial motion vectors concatenating all the 90 facial mark-

ers, these is no explicit and intuitive correspondences be-

tween global PCA eigen-vectors and localized facial move-

ments. As such, it is difficult to construct a proper mapping

between high-level user constraints and facial marker con-

figurations. To tackle this issue, we first segment the whole

face (i.e., the 90 facial markers) to six disjoint regions using

the physically-motivated segmentation scheme [JTDP03].

These six regions are forehead, eye, the left cheek, the right

cheek, mouth, and nose (Fig. 2). Subsequently, we apply

PCA to the marker motion in each facial region, respectively,

and retain more than 95% of its variation. The number of the

retained eigen-vectors is 4 for the forehead, 8 for the eye re-

gion, 3 for the left/right cheek, 6 for the mouth region, and 3

for the nose region.

Figure 2: Illustration of the physically-motivated face seg-

mentation result.

As demonstrated by Cao et al. [CFP03], ICA is effective

for decomposing facial motions into meaningful and inde-

pendent components such as expression or speech-related

components. Inspired by this work, we perform ICA on

region-based PCA coefficients to derive their independent

components. For example, after we apply ICA to the ob-

tained six-dimensional PCA coefficients of the mouth re-

gion, we found that two of them are more expression-

correlated, while three of them are speech-correlated, based

on the measuring method proposed by Cao et al. [CFP03].

For the other facial regions, we perform the similar ICA de-

composition. Finally, we concatenate the extracted ICA co-

efficients of all the six facial regions of a specific frame into
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Figure 3: An comparative editing example between the

global ICA-based editing method and our region-based ICA

approach. Here users want to edit the expression of the eye

region from neutral to sadness while keeping its speech (lip-

sync) component intact.

a feature vector (called the region-based ICA feature vector

of this frame). It should be noted that for each of the training

editing-pairs, we will generate two such feature vectors (one

for the facial pose before the editing, the other for its facial

pose after the editing).

Comparing with the original global ICA [CFP03], our

region-based ICA scheme provides fine-scale, localized con-

trols. In many facial editing scenarios, users may want to

edit a certain local facial region without affecting other re-

gions. Fig. 3 shows such an example. In this example, users

want to edit the expression of the eye region from neutral to

sadness while keeping its speech (lip-sync) component in-

tact. The global ICA method (the middle row of Fig. 3) fails

to achieve this goal, and our region-based ICA scheme can

perform this editing task with ease.

3.3. Multi-Level Facial Constraint Model

Human skeleton poses and the root trajectory as user-defined

constraints have been widely recognized and used in charac-

ter animation applications. However, specifying proper con-

straints for facial animation editing is arguably an open ques-

tion. Ruttkay [Rut99] roughly classifies various facial ani-

mation constraints to the following three categories: (1) fa-

cial anatomical characteristics such as individual muscle ac-

tivation, (2) behavioral repertoire such as human emotional

motions, and (3) animation storyboard such as lip-sync con-

straints. Inspired by the Ruttkay’s work, we propose a multi-

level facial constraint model that combines high-level con-

trols (e.g., expression/speech), mid-level constraints (e.g.,

mouth width and eye openness), and low-level controls (e.g.,

individual marker constraints) for facial animation editing.

As such, our multi-level facial constraint model offers suffi-

cient flexibility and intuitiveness to users.

Our high-level facial animation constraints include the

following four types: (1) emotion constraint: emotional fa-

cial motions can be retained during editing, (2) speech (lip-

sync) constraint: lip-sync can be kept during editing, (3)

timeline constraint: users can constrain the editing within

a pre-specified timeline range, and (4) affected region con-

straint: users can select certain facial regions for editing,

while the other regions will be kept intact. The mid-level

constraints deal with facial characteristics including mouth

width, mouth height, eye openness, etc. The low-level con-

straints in this work are defined as individual facial marker

trajectories, e.g., users can specify and edit the trajectory of

any facial marker. How to incorporate these multi-level fa-

cial animation constraints into our statistical learning model

will be detailed in follow-up Sections.

3.4. Facial Editing Style Learning

Now we describe how to learn a Gaussian Process model

from a training set of facial editing-pairs. Gaussian Process

model has been extensively used to model functional map-

pings between two given datasets [OK78, WR96]. In this

work, the training dataset is 〈Si,Ti〉 (1 ≤ i ≤ N, a total of N

facial frames are selected for manual editing), here Si repre-

sents the region-based ICA feature vector of the ith selected,

before-editing frame, and Ti represents the region-based ICA

feature vector of the ith selected, after-editing frame, we

want to learn a Gaussian Process model, F , that is able to

predict its after-editing result, y, given any unedited facial

frame, x. In other words, F(x) = y, and both x and y repre-

sent corresponding region-based ICA feature vectors.

The Gaussian Process (GP) model offers compelling ad-

vantages over other regression methods for our specific

application. First, the Gaussian Process model is non-

parametric, so it does not require as much training data as

many parametric regression models. Second, Gaussian Pro-

cess model is context-dependent. Hence, it is able to auto-

matically handle frames with different properties (e.g., talk-

ing or non-talking frames) in different ways. Examples are

shown in Section 4.

Mathematically, a Gaussian Process model is character-

ized by its hyper-parameter vector θ that includes a charac-

teristic length-scale parameter θ1 and a signal magnitude pa-

rameter θ2. In this work, we learn the hyper-parameter vec-

tor θ by optimizing the following marginal log-likelihood

function (Eq. 1).
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LGP = − log P(T |S,θ)

=
1

2
log |K +σ

2
I|+

1

2
T

T (K +σ
2

I)−1
T

+
N

2
log 2π (1)

Here LGP is the negative log-posterior of the model, σ2 is

the variance of noise (0.01 in this work), and K is a used ker-

nel function (we use the ARD covariance function [WR96]

as described in Eq. 2).

Ki, j = k(Si,S j) = θ2 exp(−
1

2θ2
1

||Si −S j||
2) (2)

Then, the Rasmussen’s minimization algorithm [Ras06] is

chosen to optimize LGP due to its efficiency. The maximum

number of iterations is experimentally set to 100. After θ is

optimally solved, the trained Gaussian Process model yields

a likelihood function for any predicted output.

3.5. Soft Constraint-based Optimization

After the Gaussian Process model is learned, we further op-

timize its objective function based on user-specified con-

straints. In this work, we treat these user-specified con-

straints as “soft constraints" and solve it using a constraint-

based optimization algorithm.

3.5.1. Minimization of Likelihood Function

After the above Gaussian Process model is learned, for any

new frame (input), x, we can obtain a distribution of its pre-

dicted output y. In addition, we can evaluate the negative

log probability of the output. This log-likelihood function is

shown in Eq. 3.

LS = − log P(y|x,θ)

=
1

2
log(2π(V (x)+σ

2))+
||y−U(x)||2

2(V (x)+σ2)
(3)

U(x) = κ(x)T (K +σ
2
I)−1

T

V (x) = k(x,x)−κ(x)T (K +σ
2
I)−1

κ(x)T

Here κ(x) is a vector in which the ith entry is k(x,Si), func-

tion U returns the mean of the posterior distribution of the

learned model given new input x, and function V returns the

variance of the learned posterior distribution. If no constraint

is involved, we just need to minimize LS to obtain the pre-

dicted output y. However, since our approach allows users

to specify multi-level facial animation constraints, the above

optimization equation need to be expanded as follows.

minimize LS(y),sub ject to C(y) = 0 (4)

Here C(y) = 0 represents all the user-specified constraints.

If all the constraints in the above optimization statement

are considered as hard constraints, then typically it is dif-

ficult to solve this optimization equation due to the follow-

ing reason: multi-level, user-specified constraints may con-

flict each other, and an ideal solution that exactly satisfies

all these hard constraints may not even exist. Therefore, in

this work, we treat all the user-specified constraints as “soft

constraints", and the importance of each constraint can be

regulated through its weight: the higher the weight of a con-

straint is, the higher priority it would get when the above

optimization is solved.

3.5.2. Transformation of Facial Soft Constraints

We choose Sequential Quadratic Programming (SQP) to

solve the above optimization equation (Eq. 4). Since mul-

tiple levels of constraints are supported in our approach, we

need to first transform all these constraints to a uniform, im-

plicit representation, C(y) = 0. For the sake of a clear ex-

planation, we detail how to transform two examples of con-

straints to the implicit representation. Other constraints can

be transformed analogously.

The first example is a high-level constraint of retaining the

speech content during the editing. In other words, we need

to keep the speech-related ICA components on the mouth re-

gion (detailed in Section 3.2). Its converted constraint func-

tion is shown as follows.

y
speech − x

speech = 0 (5)

Here yspeech and xspeech represent the speech-related ICA

coefficients of the mouth region corresponding to after-

editing and before-editing cases, respectively.

For the mid-level and low-level constraints, we need to

perform certain space transformations, because coordinates

used in mid-level or low-level constraints are often ex-

pressed with respect to the facial marker space, while the in-

put and output variables of the Gaussian Process model and

thus the optimization equation are ICA coefficients. Here is

a concrete example: if a mid-level constraint is to specify the

mouth width (i.e., the distance between the left mouth corner

marker and the right mouth corner marker), we can convert

it to the following equivalent representation (Eq. 6):

(Em +PmAmy
m)lm − (Em +PmAmy

m)rm = width

Here Em is the mean of the mouth region vectors in the

marker space, Am is the corresponding ICA transformation

matrix, Pm is the PCA transformation matrix on the mouth
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region, ym is the ICA coefficients for the mouth region, and

width is the user-specified mouth width. The subscripts lm

and rm indicate the facial markers at the left and right mouth

corners, respectively.

After all the constraints are transformed to the implicit

representation, C(y) = 0, we reformulate the above objective

function (Eq. 3) by adding soft constraint terms as follows.

L = LS +
m

∑
i

wi||Ci(y)||
2

(6)

Here wi denotes the weight for the ith constraint. We em-

ploy the SQP optimization solver [Gil06] to solve the mini-

mization of this objective function (Eq. 6). It is noteworthy

that the gradient vector used in the SQP solver is computed

with respect to the region-based ICA space, not the facial

marker space.

3.5.3. Heuristic Constraint Weight Search Algorithm

As described above, the importances of soft constraints are

regulated through pre-specified weights; however, how to

determine proper weights for these soft constraints is non-

trivial. In this work, we adapt the heuristic weight determi-

nation algorithm proposed by Le et al. [Le96] to add ex-

terior penalty function and increase weights until the con-

straints are satisfied or the optimization process ends. Its ba-

sic scheme is to increase the weight when the constraint error

value is increased. Eq. 7 shows how the weight wi is dynam-

ically updated.

wi =
1− e−P

e−P||Ci(y)||2 − e−P
(7)

Here P is a control parameter (in this work, we experi-

mentally set it to 50), ||C(y)||2 is the square of the constraint

error that is treated as a penalty in this equation. Given the

control parameter P, the weight wi increases in accordance

with the penalty value ||C(y)||2. This weight updating pro-

cess is called at every optimization iteration. Note that in the

above equation, if the penalty value ||C(y)||2 becomes zero,

the constraint term will be forced to zero as well.

3.5.4. Comparison with Space-Time Constraints

We compared our soft constraint-based optimization algo-

rithm with the classical space-time constraint technique pro-

posed by Gleicher [Gle97]. The space-time constraint tech-

nique has been successfully used for interactive character

animation editing. In order to perform this comparison, we

adapted this space-time constraint method to fit into the fa-

cial animation editing context as follows. Following Gle-

icher’s original method [Gle97], we concatenate the posi-

tions of all the 90 facial markers of an entire sequence into

a long vector Y , and then Y (k, j) represents the 3D position

of the jth marker at the kth frame. As such, the objective

function to be optimized is shown in the following equation

(Eq. 8).

L =
1

2
Y

T
H Y (8)

Here H is a diagonal matrix formulated in Eq. 9.

hii = ∑
k∈ t

∑
j∈ pt

∂Y (k, j)

∂Yi
·

∂Y (k, j)

∂Yi
(9)

To be consistent with our constraint-based optimization

formulation, constraints are specified in the facial marker

space as follows:

||CMK(Y )|| = 0 (10)

Here CMK(Y ) is a set of constraints specified in the fa-

cial marker space. SQPLAB was employed to optimize both

the adapted Gleicher’s approach [Gle97] and our approach.

When SQP is used to solve the adapted Gleicher’s method,

a metric function for measuring the difference between con-

straints and the objective is defined in Eq. 11.

m(y) = a1 L+a2 ||CMK(Y )||2 (11)

In this comparison, a1 and a2 were experimentally set

to 0.1 and 5, respectively. Fig. 4 shows one of comparison

results. In this example, users specify the same constraint

(a mouth width constraint) to an input facial animation se-

quence (total 550 frames) using both the adapted space-time

constraint method and our approach. As clearly shown in this

figure, our approach was able to generate more desirable re-

sults (i.e., closer to the original facial poses while satisfying

user-specified constraints) than the adapted space-time con-

straint method, after the same mouth constraint was speci-

fied.

4. Selected Applications and Results

This approach is computationally efficient. When its inter-

active single-frame editing program runs at a laptop with

the following configuration: Intel Pentium 2.4GHz CPU and

2GB main memory, it can achieve a real-time performance.

In our current implementation, we use the CHOLMOD lin-

ear solver [Dav04] for sparse matrix solving, and the imple-

mentation of our constraint-based Gaussian Process model

is adapted from two well-known machine learning toolkits:

GPLVM [Law05] and SQPLAB [Gil06].
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Figure 4: A comparison example between our approach and

the adapted space-time constraint method.

4.1. Facial Editing Style Learning

We have tested our approach on tens of facial animation se-

quences, and found that our approach can significantly save

the manual editing efforts while producing visually appeal-

ing editing results. For example, for an input facial anima-

tion sequence consisting of 500 frames, typically our ap-

proach only need users to manually edit 20 to 30 frames to

obtain desirable editing results. Another advantage of our

approach is that when the number of manually edited frames

is increased, the accuracy of our statistical model will be im-

proved accordingly and thus more satisfactory editing results

can be achieved.

We also compared our editing approach with the mul-

tiresolution mesh sequence editing technique proposed by

Kircher and Garland [KG06]. Based on the editing of se-

lected frames, their approach transforms motion signals into

a multiresolution representation and then propagate it to the

rest frames. Its whole procedure is similar to our approach;

however, it should be noted that their approach allows users

to manipulate any vertex of a mesh, while in our approach,

user are allowed to directly manipulate only the 90 facial

markers (vertices) on the mesh, and the deformations of the

rest vertices are computed automatically. As such, in this

comparison, the manual editing was only allowed to be per-

formed on the 90 markers (certain vertices) on the mesh

for both approaches. In addition, for both approaches, the

same frames were performed with the same manual edit-

ing. Fig. 5 shows one of comparison examples. Its top panel

shows three frames (#3, #25, and #179) of the original in-

put facial animation, and these three frames were not man-

ually edited. The bottom-left and the bottom-right panels

show the results when our approach and the multiresolu-

tion editing method are applied, respectively. In this com-

parison, the number of manually edited frames is increased

from 3 to 12, and then to 20 for both approaches. As we can

see from this figure, our approach is able to generate more

desirable and dynamic editing results than the multiresolu-

tion mesh sequence editing approach. Please refer to the en-

closed demo video for its animation comparison results. It

should be noted that when the number of the edited frames

was increased, the visual quality of the resulting sequence

by our approach was increased accordingly due to its adap-

tive learning ability; on the other hand, the results by the

multiresolution approach did not benefit much from the in-

creasing of the edited frames.

Although ground-truth comparison experiments, e.g.,

editing a neutral speaking to an angry speaking using our ap-

proach, and then comparing its results with the ground-truth

(the same person speaks the same sentence with an anger

expression), would be ideal. However, it is practically in-

feasible to conduct these experiments due to the following

major reason: Even if the same person speak the same sen-

tences twice (e.g., one is with a neutral expression, and the

other is with an angry expression), and it is obvious that the

phoneme sequences from these two recordings will be the

same. However, the duration and phoneme timing of these

two recordings (both audio and motion frames) will be sig-

nificantly different. As such, after we edit the neutral record-

ing to its intended expression (i.e., anger), its total number of

frames will stay the same (as the original neutral recording)

and is still different from that of the original angry record-

ing. It is noteworthy that how to perform satisfactory time-

warping and alignment on two facial motion sequences with

different duration is another challenging topic beyond this

work. Therefore, we argue that it is extremely difficult to

perform sound and fair frame-by-frame ground-truth com-

parisons as described above.

4.2. Editing Style Transferring Between Sequences

Our learned editing style model can be applied to not only

the remaining frames of the same sequence, but also other

animation sequences. This application is particularly useful

when users need to edit a large number of facial animation

sequences with a similar editing goal, e.g., manipulating cer-

tain facial regions in a specific way or performing a similar

expression transformation. Fig. 6 shows one such example.

In this example, we first sculpted a sad expression from an
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Figure 5: An comparison example between our approach and the multiresolution mesh sequence editing approach. Its top panel

shows three frames (#3, #25, and #179) of the original input facial animation, and these three frames were not manually edited.

The bottom-left and the bottom-right panels show the results when our approach and the multiresolution editing method are

applied, respectively. Note that those manually edited frames are shown in the demo video (not in this figure).

input facial animation sequence (100 frames) by only man-

ually editing its four selected frames (#40, #50, #83, #91,

shown in the left panel of Fig. 6). Subsequently, we saved

its learned editing style model and applied it onto a new fa-

cial animation sequence (100 frames) with a different avatar

model. Four randomly selected frames (#1, #9, #60, and

#93) of the resulting facial animation with transferred “sad-

expression editing" are shown in the right panel. For the an-

imation results, please refer to the demo video.

5. Discussion and Conclusions

In this paper, we present a novel facial editing style learning

and transferring framework, and it is designed to dramati-

cally reduce the tedious and time-consuming manual efforts

involved in current facial animation editing practices. Using

our approach, users are only required to edit a small num-

ber of selected frames. Besides the novel constraint-based

Gaussian Process model, we also present a multi-level facial

constraint model for intuitive and flexible user controls.

Certain limitations still exist in current implementation.

Fig. 7 shows one example where our approach failed to pro-

duce desired results. In this example, its left panel shows the

manual editing (a simple mouth pulling down operation) on

a total of three keyframes. The right panel shows some of

the results by our approach. The first frame in the right panel

achieved the desirable result since it has the similar context
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Figure 6: The learned editing style model from an edited animation sequence (four manually edited frames are shown in the

left panel) automatically transfers the learned “sad editing" to another facial animation sequence with a different avatar model

(the right panel). Note that the four randomly selected frames in the right panel are not the same as those at the left panel. The

face model in the left panel was acquired from http://www.turbosquid.com/.

as one of the edited keyframes. The second and third frames

in the right panel failed to keep their original eyebrow con-

figurations since they do not have the similar context with

any of the edited keyframes. Thus, one limitation of our cur-

rent approach is that users have to manually identify repre-

sentative keyframes for manual editing based on their own

judgment, which is nontrivial at some cases. In the future,

we plan to perform in-depth statistical analysis on the input

animation frames, and then automatically identify and rec-

ommend those potentially critical/representative frames to

users (for manual editing). Second, in certain cases, anima-

tors may want to achieve distinct editing goals or styles on

different parts of an animation sequence, e.g., making “hap-

pier" for the first half of the animation and “sadder" for the

second half, our approach cannot guarantee the natural tran-

sition at frames of the boundary area. Finally, another lim-

itation of our approach is that as a data-driven technique, it

is hard to know in advance how many keyframes should be

selected and edited in order to generate satisfactory editing

results. Currently, users can conveniently edit more frames

if the resulting facial animation does not sufficiently satisfy

the users’ expectation.

Several research issues can be further explored. First, be-

cause our current approach cannot quantify the scope of the

editing styles that our model excels, it need considerable

users’ trial and error efforts. Exploring perceptually guided

schemes [DM08] to quantify the scope of effective editing

styles could be a future direction to pursue. Second, in cur-

rent work, fine-scale facial details such as wrinkles are not

taken into account. As such, extending or improving this

framework to handle the editing of these fine-scale facial de-

tails would be useful to improve the visual realism.
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