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Abstract. Due to the complexity of the dental models in semantics of
both shape and form, a fully automated method for the separation of
the lower and upper teeth is unsuitable while manual segmentation re-
quires painstakingly user interventions. In this paper, we present a novel
interactive method to segment the upper and lower teeth. The process is
performed on 3D triangular mesh of the skull and consists of four main
steps: reconstruction of 3D model from teeth CT images, curvature esti-
mation, interactive segmentation path planning using the shortest path
finding algorithm, and performing actual geometric cut on 3D models
using a graph cut algorithm. The accuracy and efficiency of our method
were experimentally validated via comparisons with ground truth (man-
ual segmentation) as well as the state of art interactive mesh segmen-
tation algorithms. We show the presented scheme can dramatically save
manual effort for users while retaining an acceptable quality (with an
averaged 0.29 mm discrepancy from the ideal segmentation).

1 Introduction

Computed tomography (CT) images are commonly used in cranio-maxillofacial
(CMF) surgery, orthodontics and dentistry. It is especially true when cone-beam
CT (CBCT) scanners are introduced. CBCT scanners have much lower radiation
than medical spiral CT scanners while the thickness of each slice is much thinner
(0.125mm-0.4mm per slice thickness). CBCT scanners are now extensively used
in dental offices to replace the plain cephalometric and panoramic radiographic
machines. One of the main interests in CMF surgery and orthodontics is the
teeth. In order to quantify the deformity accurately, a CT scan is usually com-
pleted when the maxillary (upper) and mandibular (lower) teeth are in centric
occlusion (peak and valley on the teeth bite down tightly). This brings us a
major problem: the separation of the maxillary and mandibular teeth. Due to
the irregular 3D geometry of the teeth, they are usually segmented manually by
drawing the maxillary and mandibular teeth on each cross-sectional slice. It is
time consuming and difficult to segment the peaks of one jaw and the valleys of
the opposite jaw on a single slice. It becomes even more difficult if the scatterings
(artifacts) are present due to dental restoration and orthodontic braces.
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Fig. 1. Schematic view of this interactive approach for the lower and upper teeth
segmentation

The popularized scheme of current 3D mesh segmentation approaches is to
extract and optimize certain application-specific mesh features. One common
issue of these automated mesh segmentation approaches is that users cannot
control or refine the process if the approaches fail to produce plausible seg-
mentation results on complicated geometric models. Many semi-automatic mesh
segmentation algorithms [1–5] were attempted for the purpose of mesh segmen-
tation. Researchers have also developed teeth-specific segmentation techniques
to separate individual teeth from a teeth dataset [6, 7]. These approaches assume
that the upper and lower 3D teeth can be perfectly separated by a plane. Never-
theless, it is nontrivial to extend these methods for the separation of complicated
geometrical models such as the maxillary and mandibular teeth in this work.

In this paper, we present a novel interactive technique for segmenting the
upper and lower teeth with limited user interventions. First, we reconstruct a
3D triangular mesh model from the acquired teeth CT images. Then, we compute
the curvatures of the triangular mesh such that they are more sensitive in the
vertical direction than in the horizontal direction. Then, through minimized user
interventions such as selecting several control points, we construct a cost function
and search for the optimal segmentation path on the mesh. Finally, the graph
cut algorithm [8] is employed for handle the remaining isolated sticky parts.
Figure 1 shows the schematic view of our approach.

2 Our Approach

2.1 3D Teeth Model Reconstruction

The CT image data of patients’ craniofacial skeleton were acquired while the
patients were on a centric occlusion. The CT scans were completed using a
standard scanning algorithm: a resolution of 512 × 512 at 0.625-1.25 mm slice
thickness, 25cm or lesser field-of-view (FOV), 0◦ gantry tilt, and 1:1 pitch. Then,
we use the open-source OsiriX imaging software (http://www.osirix-viewer.com)
to reconstruct their corresponding 3D triangular mesh from the CT images. We
remove triangles distant from the teeth to reduce unnecessary computations.

2.2 Curvature Estimation

Based on the observation that the upper and lower teeth are expected to be
segmented along an approximate horizontal direction, we compute the curvature
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Fig. 2. Illustration of how the curvature of P is computed

of each vertex of a 3D teeth model such that it is more sensitive to the vertical
direction while less sensitive to other directions. In this process, we use a pre-
defined up vector and then calculate the curvature KP for each vertex P as the
averaged normal vector difference between the normal at the vertex P and the
normals of P ’s neighboring triangles as follows:

KP =

∑

i∈nbhd(P )

(

arccos(−→np · −→u ) − arccos(
−→
Ni · −→u )

) sign(−→u ·
−→vpi)

|−→vpi|

|nbhd(P )|
(1)

Here nbhd(P ) is the set of P ’s neighboring triangles, −→np is the normal vector of

P ,
−→
Ni is the normal vector of a neighboring triangle Fi, −→u is the pre-defined

up vector, −→vpi is the vector from P to the centroid of Fi, the sign function
sign(−→u · −→vpi) determines the vertical direction of −→vpi. Eq. 1 incorporates the
orientation into the curvature estimation in the following way: angles between
normal vectors and the up vector are extracted, then, the sign function is used
to determine the concaveness of a neighboring triangle. Finally, we weighted
average the estimated curvatures of all neighboring triangles, and the weights
are inversely proportional to the distance to the center of the triangle (vpi).

The above estimated curvatures can be used to determine the convex or con-
cave property of the mesh vertices (Figure 2). Vertices with positive curvatures
are called convex vertices; otherwise they are concave ones. In this work, we want
the segmentation path to travel through the concave area of the mesh by simply
thresholding the convex vertices. Note that since the acquired CT slices are in
the XY plane, we generally specify the up vector as the Z+ direction. We also
compared our curvature estimation scheme with the widely-used Gaussian cur-
vature estimation algorithm [9]. As shown in Figure 3, the curvatures computed
by our approach better separate the concave crevices in the horizontal direction
(i.e., potential segmentation path area, shown as blue color in Figure 3) on the
3D teeth model than the Gaussian curvatures [9] where low curvature crevices
are distributed everywhere.

2.3 Interactive Segmentation Path Planning

Because the upper and lower teeth are irregularly intertwined each other, an au-
tomatic method that fully depends on the curvature guidance would not always
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Fig. 3. Original teeth model (left), visualization of Gaussian curvatures (middle) and
visualization of the curvatures by our approach (right)

produce plausible segmentation. Thus, our approach allows users to select several
control points on the model to guide the segmentation planning. Our approach
computes an optimal segmentation path that travels through low curvature ar-
eas while satisfying the user-specified control points. During this process, users
can interactively add or change the control points, and the corresponding seg-
mentation paths will be updated in real-time.

We employ the Dijkstra shortest path algorithm [10] to find the optimal
segmentation path between two control points. This algorithm takes two control
points as the source and the destination and then minimizes the overall cost. A
cost function C between two neighboring vertices i and j is defined as follows:

C(i, j) =
d(i, j)

|Ki| + |Kj |
(2)

Where d(i, j) is the Euclidean distance between vertex i and vertex j, Ki and
Kj are the computed curvatures for vertices i and j, respectively (Eq. 1).

If the searched shortest path only consists of existing vertices on the 3D
model, then it highly depends on the given mesh topology and may not be
smooth. To alleviate this problem, many mesh segmentation methods perform a
model subdivision (refinement) after an initial cut [5, 4, 3]. However, due to the
lack of user controls on the mesh refinement process, the segmentation path on
the refined mesh might measurably deviate from the original computed path,
even though it may appear smoother. Mitchell et al. [11] tackle this problem by
partitioning an edge into intervals so that the exact segmentation computation
can be performed. The computational complexity of this algorithm is O(n2 log n)
in the worst case where n is the number of vertices on the mesh, which is not
efficient for practical interactive applications.

In this work, to achieve a trade-off between algorithm efficiency and accuracy,
we use a simple while efficient partition strategy that divides an edge into a min-
imum number of equal intervals and each of them has a user-defined minimum
length dmin. The curvatures of interval ends are linearly interpolated based on
the two end points of the corresponding mesh edge, and we further assume only
if two interval-ends belong to the same triangle, then these two points have a
cost value; otherwise infinity. The computational complexity of our algorithm
is O(n log n) where n is the number of vertices on the mesh. Figure 4 shows
the searched optimal segmentation path from the outside/inside views. Users se-
lected 3 control points in the front side and 2 points inside the mouth. All these
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Fig. 4. Results of interactive segmentation path planning (model #1). Selected control
points are shown as blue points and the searched segmentation paths are red curves.

Fig. 5. The searched
shortest segmentation
path on a mesh without
edge-partition (left), on
the subdivision mesh
(middle), and the mesh
with our even edge-
partition scheme (right)

control points are illustrated as blue points. In this dataset, there is no gap be-
tween the upper and lower teeth, thus our approach can compute a continuous
segmentation path surrounding the mesh. Although the distance between two
selected control points is relatively large, our algorithm is able to compute a
plausible segmentation path with the aid of the estimated curvatures.

We also compared our approach (mesh with even edge-partition) with the
original mesh (without edge-partition) and the subdivision mesh. As shown in
Figure 5, the shortest path computed from the mesh with even edge-partition is
smoother than the other two cases. It is noteworthy that the segmentation path
on the subdivision mesh has more vertices than that on the mesh with even
edge-partition, which means more computation time. Furthermore, the shortest
segmentation path computed from the subdivision mesh is still more rougher
than the path on the mesh with our even edge-partition scheme.

2.4 Graph Cut on Teeth Models

After major segmentation paths are computed through the above interactive
interface, certain isolated sticky parts may remain to be separated. We auto-
matically segment the remaining sticky parts by applying the graph cut algo-
rithm [8]. This algorithm works on a flow network with multi sources and sinks
where nodes are mesh triangles and edges are mesh edges. The sources are trian-
gles on top of the mouth and sinks are triangles on the bottom. In this process,
if a triangle is intersected with the above searched major segmentation paths
(Section 2.3), then the capacities of all the edges of this triangle are set to zero;
the capacities of other network edges are set to the length of corresponding mesh
edges.
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Fig. 6. Segmentation results by our approach: Green curves are the segmentation paths
solved by the graph cut, and the semi-transparent yellow region is the upper teeth.

Figure 6 shows the segmentation results after the interactive segmentation
path planning and the automated graph cut process are applied to a number
of 3D teeth models. Due to the dental braces, many holes as well as rings and
loops exist on the models. Despite of their model complexity, the combination of
interactive segmentation planning (light red curves) and automated graph cut
(bold green curves) is able to plausibly separate the upper and lower teeth. Note
that we employ the graph cut not to improve the accuracy but to complete the
segmentation, and the interactive segmentation path planning step generates the
majority of the cut paths and then the graph cut fills the missing parts in the
paths.

3 Results and Evaluation

We performed two experiments including ground truth validation and compar-
isons between our approach and two of the state of art mesh segmentation algo-
rithms to validate the effectiveness of our approach.

3.1 Ground Truth Validation

In order to quantify the segmentation quality by our approach, we performed
the following ground truth validation experiment on two datasets: a single cut
(not a loop) from the leftmost to the rightmost of a teeth model, the ground
truth segmentation was generated by manually selecting hundreds of segments
on the mesh (219 segments for model #1 and 128 segments for model #3), and
our semi-automatic approach generated the segmentation path based on several
user-specified control points (3 control points for model #1, 5 control points for
model #3). We projected these two segmentation paths onto Z-axis to measure
their discrepancies, because Z-axis projection maximally shows the trajectory
difference. Figure 7 shows the Z-coordinates of the two validations. Their maxi-
mum errors are 1.57 mm (model #1) and 1.67mm (model #3), and the average
errors are 0.28 mm (model #1) and 0.30mm (model #3), respectively.
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Fig. 7. Ground truth comparison of two segmentation paths (blue for the ground-truth,
red for our approach) in the Z-axis projection.

Fig. 8. Segmentation comparison of model #1 between our approach (red) and the
other two approaches (blue and green).

3.2 Comparisons With State Of The Art

We also compared our approach with two state of the art interactive mesh seg-
mentation algorithms [4, 5]. Figure 8 shows the comparison results. As shown in
this figure, our approach significantly outperformed the other two approaches.
Note that the segmentation method proposed by Ji et al. [4] is able to generate
smooth segmentation paths due to its refinement algorithm if the teeth only
touch in small parts, but it failed to handle this complicated teeth model. In
this case, its region growing scheme is uncontrollable with a small number of
seeds. Therefore, it requires users to manually select a large number of seeds.

4 Discussion and Conclusions

In this paper we present an effective interactive technique for the upper and
lower teeth segmentation. Through numerous experiments on acquired teeth CT
datasets, we found that our approach is fast (e.g., tens of times faster than man-
ual approaches) and it required minimized user interventions such as selecting
several control points to guide the algorithm process. We also compared our
approach with two current interactive mesh segmentation algorithms and found
that our approach significantly outperformed them on segmenting complicated
teeth models.

One major limitation of current approach is that when serious artifacts exist
in 2D teeth CT images, our approach might fail to produce plausible segmenta-
tion results. For example, due to the strong metal artifacts of dental implant in
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Fig. 9. Metal artifacts
on the acquired 2D
teeth CT images sig-
nificantly affect the ac-
curacy of segmenta-
tion by our approach.

the acquired teeth CT images and thus 3D teeth models, the segmentation ac-
curacy of our approach would be significantly affected (Fig. 9). In the future, we
plan to explore effective and automated algorithms to postprocess the acquired
2D teeth CT images and incorporate CT image segmentation with 3D geometric
segmentation.
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